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Boundary effects in the stepwise structure of the Lyapunov spectra
for quasi-one-dimensional systems

Tooru Taniguchi and Gary P. Morriss
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

~Received 14 October 2002; published 26 August 2003!

Boundary effects in the stepwise structure of the Lyapunov spectra and corresponding wavelike structure of
the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems of many hard disks. Four
different types of boundary conditions are constructed by combinations of periodic boundary conditions and
hard-wall boundary conditions, and each leads to different stepwise structures of the Lyapunov spectra. We
show that for some Lyapunov exponents in the step region, the spatialy component of the corresponding
Lyapunov vectordqy j , divided by they component of momentumpy j , exhibits a wavelike structure as a
function of positionqx j and timet. For the other Lyapunov exponents in the step region, they component of
the corresponding Lyapunov vectordqy j exhibits a time-independent wavelike structure as a function ofqx j .
These two types of wavelike structure are used to categorize the type and sequence of steps in the Lyapunov
spectra for each different type of boundary condition.
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I. INTRODUCTION

Microscopic chaos is one of the essential reasons to
tify a statistical treatment of deterministic dynamical sy
tems. In a chaotic system, small initial errors diverge ex
nentially, as characterized quantitatively by the Lyapun
exponentsln , and this means that it is not possible, in pri
ciple, to predict precisely all quantities~other than conserved
quantities! of deterministic systems and a statistical tre
ment of the system is required. It is well known that ev
one-particle systems can be chaotic and have some o
important statistical properties of many-body equilibriu
statistical mechanics such as mixing, etc. For this reas
many studies of chaotic behavior have been done in o
particle systems, for example, billiard systems and Lore
gas models@1,2#. However, many-particle effects should st
play an important role in some statistical aspects, such as
central limit theorem, a justification of thermodynamical re
ervoirs, and critical phenomena, etc. Therefore, it is inter
ing, in general, to know which aspects of statistical mecha
cal systems are due to chaos and which are the combina
of a chaotic effect and a many-particle effect. In other wor
what are the limitations of one-particle systems as model
realistic systems.

The stepwise structure of the Lyapunov spectrum, wh
was reported numerically in many-hard-disk systems, is
such many-particle chaotic effect@3–5#. Here, the Lyapunov
spectrum is introduced as the sorted set$l1 ,l2 , . . . % of the
Lyapunov exponents satisfying the condition thatl1>l2
> . . . , and isused to characterize the many-particle chao
dynamics. The stepwise structure of the Lyapunov spect
appears in the region of smallest Lyapunov exponents~in
absolute value!. This fact suggests that steps in the Lyapun
spectra are associated with slow modes and thus the ma
scopic behavior of the system. Small positive Lyapunov
ponents should correspond to slow growth processes
small negative Lyapunov exponents should correspond
slow relaxation processes. This point is partly supported
1063-651X/2003/68~2!/026218~18!/$20.00 68 0262
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the existence of global or cooperative phenomena in
Lyapunov vectors, the so called Lyapunov modes, which
wavelike structures in the eigenvector associated with e
degenerate Lyapunov exponent of the stepwise region@4–7#.
This wavelike structure of the Lyapunov modes appears a
function of the particle position and possibly the time, so t
structure connects the tangent space with the phase sp
Although the Lyapunov vectors have been the subject
some studies for more than a decade~for example, see Refs
@8–16#!, it is remarkable that an observation of their glob
structure in fully chaotic hard-core many-particle syste
has only recently appeared, despite the observation of s
wise structures in the Lyapunov spectrum of coupled m
lattices@8#. A possible reason for this may be the difficulty o
observing Lyapunov modes in systems with soft interact
potentials@17#. Explanations for the stepwise structure of t
Lyapunov spectra have been attempted using periodic o
models @18# and using a master equation approach@19#.
Other theoretical approaches to the Lyapunov modes h
included using a random matrix approach for a on
dimensional model@20#, using a kinetic theoretical approac
@21#, and by considering these as the ‘‘Goldstone mod
@22#.

If the stepwise structure of the Lyapunov spectra is a
flection of a global behavior of the system, then one may
the question: Does such a structure depend on the boun
conditions or the geometry of the system? One of the p
poses of this paper is to answer this question using so
simple systems. In this paper, we investigate numerically
stepwise structure of the Lyapunov spectra, and the ass
ated Lyapunov modes, in systems of many hard disks
two-dimensional rectangular geometry with four differe
boundary conditions: (P,P), purely periodic boundary con
ditions; (P,H), periodic boundary conditions in thex direc-
tion and hard-wall boundary conditions in they direction;
(H,P), hard-wall boundary conditions in thex direction and
periodic boundary conditions in they direction; and (H,H),
purely hard-wall boundary conditions. In all cases, we to
©2003 The American Physical Society18-1
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the y direction as the narrow direction of the rectangle a
the x direction as the longer orthogonal direction. For ca
(P,P), the shape of the system is like the surface o
doughnut, for (P,H) and (H,P) the system has the shape
the surface of pipe with hard walls at its ends. Case (H,P) is
a long pipe with small diameter while case (P,H) is a short
pipe with a large diameter. Case (H,H) is a system of rect-
angular shape surrounded by hard walls. Adopting hard-w
boundary conditions in a particular direction destroys
spatial translational invariance in that direction, so by co
sidering these models we can investigate the effects of
absence of spatial translational invariance in each direc
separately, and in combination, on the stepwise structur
the Lyapunov spectra and existence of the Lyapunov mo
This can be used to check some theoretical approache
these phenomena such as those in Refs.@19–21#, in which
the consequences of spatial translational invariance pla
essential role in explaining the stepwise structure of
Lyapunov spectra and the Lyapunov modes. We obtain
ferent stepwise structures of the Lyapunov spectra with e
different type of boundary condition. In particular, we o
serve a stepwise structure of the Lyapunov spectrum eve
the case of purely hard-wall boundaries (H,H), where the
total momentum is not conserved in any direction.

The second purpose of this paper is to categorize the s
wise structure of the Lyapunov spectra according to
wavelike structure of the Lyapunov modes. So far the wa
like structure of the Lyapunov vectors was reported in
Lyapunov vector components as a function of position on
for example, in the quantitydqy j

(n) as a function of the posi
tion qx j ~the transverse Lyapunov mode! @4–6# and in the
quantitydqx j

(n) as a function of the positionqx j ~the longitu-
dinal Lyapunov mode! @7,17#, in whichdqy j

(n) (dqx j
(n)) is they

component (x component! of the spatial part of the
Lyapunov vector of thej th particle corresponding to thenth
Lyapunov exponentln , andqx j is the x component of the
spatial component of thej th particle. These wavelike struc
tures appear in the stepwise region of the Lyapunov sp
trum. However, it is not clear whether there is a direct co
nection between the sequence and the kind of steps in
Lyapunov spectrum and the associated Lyapunov modes,
is, how to categorize the steps of the Lyapunov spectr
by their Lyapunov modes. In a two-dimensional syste
with periodic boundary conditions, the Lyapunov vecto
associated with the zero-Lyapunov expone
(dqx

(n) ,dqy
(n) ,dpx

(n) ,dpy
(n))T, n52N22,2N21, . . . ,2N13

can be written as linear combinations of the basis vec
(a0 ,0,0,0)T, (0,a0 ,0,0)T, (0,0,a0 ,0)T, (0,0,0,a0)T,
(px ,py ,0,0)T, and (0,0,px ,py)

T, whereT is the transpose,N
is the number of particles,0 is anN-dimensional null vector,
a0 is an N-dimensional vector with all components equ
andpx[(px1 ,px2 , . . . ,pxN)T @py[(py1 ,py2 , . . . ,pyN)T# is
the N-dimensional vector whose components are thex com-
ponentpx j (y componentpy j) of the momentum of thej th
particle. If we restrict our consideration to the spatial co
ponents of the Lyapunov vector, we need only consider b
vectors with nonzero spatial components, that is (a0 ,0,0,0)T,
(0,a0 ,0,0)T, and (px ,py j ,0,0)T. The Lyapunov vector com
02621
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ponentsdqx j
(n) , dqy j

(n) , dqx j
(n)/px j , anddqy j

(n)/py j correspond
to the zero-Lyapunov exponents of the purely periodic s
tem, the first two are associated with spatial translatio
invariance and the second two with the deterministic nat
of the orbit ~time translational invariance!. In this paper, we
show that the quantitiesdqy j

(n) anddqy j
(n)/py j as a function of

qx j are sufficient to categorize the stepwise structure of
Lyapunov spectra of a quasi-one-dimensional system. M
concretely, we consider two types of Lyapunov modes:
quantity dqy j

(n) as a function of the positionqx j , the trans-
verse~spatial translational invariance! Lyapunov mode@Ts#,
and the quantitydqy j

(n)/py j as a function of the positionqx j

and time~or collision number!, the transverse time transla
tional invariance Lyapunov mode@Tt#. In two-dimensional
rectangular systems consisting of many hard disks with
riodic boundary conditions (P,P), it is known that there are
two types of steps of the Lyapunov spectra: steps of deg
eracy two and steps of degeneracy four@5,6#. The Lyapunov
vectors associated with the two-point steps of the Lyapu
spectrum are known to contain a wavelike structure of ty
@Ts# for a rectangular system. In this paper, we show that
wavelike structure corresponding to the four-point steps
the Lyapunov spectrum is of type@Tt#. Further, we observe
time-dependent oscillations in the mode@Tt#, whereas the
mode @Ts# is stationary in time. The wavelike structure o
type @Tt# also appears in rectangular systems with hard-w
boundary conditions@that is, for (P,H), (H,P), and
(H,H)], and specifically in the case of purely hard-wa
boundary conditions where the transverse Lyapunov m
@Ts# does not appear. We show that the stepwise structur
the Lyapunov spectra in the boundary cases (P,P), (P,H),
(H,P), and (H,H) can be completely categorized by wav
like structures of types@Ts# and @Tt#.

One of the problems that make it difficult to investiga
the structure of the Lyapunov spectra and the Lyapun
modes is that the calculation of a full Lyapunov spectra fo
many-particle system is a very time-consuming numeri
calculation. Therefore, it is important to use a system
which the stepwise structure of the Lyapunov spectra and
Lyapunov modes can be calculated as quickly as possibl
is known that a rectangular system has a wider stepwise
gion in the Lyapunov spectrum than a square system~of the
same area! @5#. Noting this, in this paper we concentrate o
the most strongly rectangular system, namely a quasi-o
dimensional system, in which the rectangle is so narrow t
particles cannot exchange their positions, thus the orde
the particles is maintained and collisions can only occur
tween neighboring particles. As will be shown in this pap
the stepwise structure of the Lyapunov spectrum for
quasi-one-dimensional system is the same as for the f
rectangular system which allows exchange of particle po
tions and collisions between any pair of particles, and
steps of the Lyapunov spectra consist of two-point steps
four-point steps, for the fully periodic case (P,P). Another
advantage of using the quasi-one-dimensional system is
in this system the roles of thex direction andy direction are
separate, so, for example, we can expect the most clear
ference when applying hard-wall boundary in each ca
8-2
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
(P,H) and (H,P). We also investigate the particle densi
dependence of the Lyapunov spectrum to find a state
which the two-point steps are most clearly distinguish
from the four-point steps.

The outline of this paper is as follows. In Sec. II, w
discuss in detail the quasi-one-dimensional system and
dependence of the Lyapunov spectrum on the number of
disks N and the density. In Sec. III, we consider the pure
periodic boundary condition case (P,P), and investigate
wavelike structures of types@Ts# and @Tt# in the Lyapunov
vectors. In Sec. IV, we consider other boundary conditio
in particular, hard-wall boundary conditions in they direction
(P,H), and in thex direction (H,P), and then purely hard
wall boundaries (H,H), and investigate the existence
modes of types@Ts# and @Tt# in their Lyapunov vectors.
Results for the four different boundary conditions are co
pared. Finally, we give some conclusions and remarks
Sec. V.

II. QUASI-ONE-DIMENSIONAL SYSTEMS AND DENSITY
DEPENDENCE OF THE LYAPUNOV SPECTRUM

The stepwise structure of the Lyapunov spectra is pure
many-particle effect of the chaotic dynamics, and so fa
has been investigated in systems of 100 or more partic
However, the numerical calculation of the Lyapunov spec
for such large systems is very time consuming. Noting t
point, in this section we discuss how we can investigate
stepwise structure of the Lyapunov spectrum for a sys
whose number of particles is as small as possible. We
investigate the particle density dependence of the Lyapu
spectrum in order to choose system parameters which
the clearest differentiation of the stepwise structure.

We consider two-dimensional systems consisting ofN
hard disks in which the radius of the particle isR and the
width ~height! of the system isLx (Ly). One way to get the
stepwise structure of the Lyapunov spectrum in a tw
dimensional system consisting of a small number of partic
is to choose a rectangular system rather than a square sy
~of the sameN and area!, because the stepwise region in t
Lyapunov spectrum is wider in a more rectangular syst
@5#. Noting this characteristic, we concentrate on the m
rectangular case, namely, the quasi-one-dimensional sy
defined by the conditions

RNA3,Lx and 2R,Ly,4R. ~1!

A schematic illustration of the quasi-one-dimensional syst
is shown in Fig. 1. This quasi-one-dimensional system i
narrow rectangular system where each particle can only

FIG. 1. Quasi-one-dimensional system: A narrow rectangu
system satisfying the conditionsRNA3,Lx and 2R,Ly,4R.
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teract with two nearest-neighbor particles, and particles
main in the same order. In the quasi-one-dimensional sys
the upper bound rmax on the particle density r
[NpR2/(LxLy) @23# is given by rmax5p/(2A3)
50.9068 . . . in thepurely periodic boundary conditions an
rmax5p/450.7853 . . . in the purely hard-wall boundary
conditions. In such a system, we get a stepwise structur
the Lyapunov spectrum even in a system as small asN
510, as shown in Fig. 2, where the Lyapunov spectrum
normalized by the maximum Lyapunov exponentl1'3.51.
To get this figure, we chose the parameters asR51, Ly
52R(111026), Lx5NLy(111023), and the massM of the
particle and the total energyE are given by 1 andN, respec-
tively, and we used purely periodic boundary conditions. T
particle density of this system is given byr50.7846 . . . .
Noting the pairing property of the Lyapunov spectrum f
Hamiltonian systems, namely, the property that in Ham
tonian systems any positive Lyapunov exponent accom
nies a negative Lyapunov exponent with the same abso
value @1,24#, we plotted the first half of the Lyapunov spe
trum in Fig. 2.~The negative branch of the Lyapunov spec
will be omitted from all subsequent plots.! It is clear that the
Lyapunov exponentsl16 and l17 form a two-point step in
this spectrum.

In order to calculate the Lyapunov spectra and
Lyapunov vectors we use the algorithm due to Bene
et al., which is characterized by intermittent rescaling a
renormalization of Lyapunov vectors@25,26#. In the applica-
tion of this algorithm to systems with hard-core particle i
teractions, we calculate the matrixL(tk), whose column
vectors give the Lyapunov vectorsdGn(tk) corresponding to
the local-time Lyapunov exponentl̃n(tk) at time t5tk just
after thekth collision in the system. The dynamics of th
matrix L(tk) is given byL(tk11)5NkGkMkL(tk), in which

r

FIG. 2. The Lyapunov spectrum normalized by the maximu
Lyapunov exponent for a ten-hard-disk system with the perio
boundary conditions in both directions. The Lyapunov expone
l16 andl17 shown as the black circles form a two-point step as
ciated with the transverse Lyapunov modes shown in Fig. 3.
gray circle is the zero-Lyapunov exponentl19 whose corresponding
Lyapunov vector componentsdqy j

(n) show a constant behavior~also
see Fig. 3!.
8-3
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Nk is the matrix required to normalize each column vector
the operated matrixGkMkL(tk), Gk is the Gram-Schmidt
procedure ensuring the orthogonality of the columns in
operated matrix, andM k specifies the tangent space dyna
ics including a free flight and a particle collision@3#. The
local-time Lyapunov exponentl̃n(tk) is calculated as the rat
of the exponential divergence~contraction! of the nth col-
umn vector of the matrixL(tk) to thenth column vector of
the matrixGkMkL(tk). The Lyapunov exponentln is given
as a time-averaged local-time Lyapunov exponent afte
long time calculation:ln5 limk→`l̃n(tk). Here we use the
standard metric dds25( j 51

N (ddqx j
(n)21ddqy j

(n)21ddpx j
(n)2

1ddpy j
(n)2) for the tangent space with thex componentdpx j

(n)

and y componentdpy j
(n) of the Lyapunov vector of thej th

particle corresponding to the local-time Lyapunov expon
l̃n . Other papers such as Refs.@3,27,28# should be referred
to for more details of the Benettin algorithm and the tang
space dynamics of many-hard-disk systems.

It is very important to note that there are two ways th
convince us of the structure of the Lyapunov spectrum;
is simply to find a step structure directly in the Lyapun
spectrum, and another is to find a structure in the Lyapu
vectors corresponding to a specific Lyapunov exponent. F
ure 3 is the plot of the time average^dqy j

(n)& of they compo-
nent of thej th particle contribution to the Lyapunov vecto
dGn corresponding to the Lyapunov exponentsl19, l17, and
l16 as functions of the time average^qx j&/Lx of the normal-
izedx component of thej th particle~for j 51,2, . . . ,N) ~the

FIG. 3. The time-averagedy components^dqy j
(n)& of the

Lyapunov vector of thej th particle as functions of the time averag
^qx j&/Lx of the normalizedx component of the position of thej th
particle corresponding to the Lyapunov exponentsl19, l17, and
l16, in the ten-hard-disk system with the periodic boundary con
tions in both directions. The circle, triangle, and square dots co
spond to the Lyapunov exponentsl19, l17, andl16, respectively,
which are shown as the gray-and black-filled circles in Fig. 2. T
dotted and dashed lines are the fitting lines for the sinusoidal fu
tions, and the solid line is the fit for the constant function.
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graph @Ts#). The corresponding Lyapunov exponentsl17
and l16 are shown as the black-filled circles in Fig. 2 an
form a two-point step in the Lyapunov spectrum. The tim
average of the quantitiesdqy j

(n) andqx j is the arithmetic av-
erage of the quantity immediately after collision, taken ov
100N collisions. The step consisting of two points in th
Lyapunov spectrum of Fig. 2 accompanies wavelike str
tures in their Lyapunov vectors, which are called the tra
verse spatial translational invariance Lyapunov modes
should be emphasized that the Lyapunov modes in Fig. 3
stationary over 100N collisions and the time average shar
ens their wavelike structures. In this figure, we fitted t
numerical data for the Lyapunov modes corresponding to
Lyapunov exponentsl17 andl16, to obtain the functionsy
5ancos(2px1bn) @(a17,b17)5(0.199 13,0.9703) for the
triangle dots, and (a16,b16)5(0.240 25,20.596 77) for the
square dots#. It should be noted that the differenceb17
2b1650.97032(20.596 77)51.567 07 of the two values
of the phasesbn is approximatelyp/251.570 . . . , meaning
that these two waves are orthogonal to each other. As
Benettin algorithm returns orthonormal Lyapunov vecto
an in the fits are simply normalization constants. The gra
of the Lyapunov vector componentdqy j

(n) as a function of the
positionqx j ( j 51,2, . . . ,N) becomes constant in one of th
zero-Lyapunov exponentl19 shown as the gray-filled circle
in Fig. 2. In Fig. 3, we also fitted the numerical data cor
sponding to the zero-Lyapunov exponentl19 by the constant
function y5a19 with the fitting parameter valuea19
50.015 114.

Although we can recognize the two-point step of t
Lyapunov spectrum in Fig. 2, it is important to note th
there is another type of step in the two-dimensional hard-d
system with a rectangular shape and periodic boundary c
ditions. It is well known that in larger systems the Lyapun
spectrum can have a stepwise structure consisting of b
two-point and four-point steps@5,21#. If we want to investi-
gate the four-point steps, we have to consider a system
sisting of more than ten particles.

Another interesting property of the Lyapunov vectors
the angleun between their coordinate space directiondq(n)

and their momentum space directiondp(n), dGn
5(dq(n),dp(n))T, whereun is defined by@21#

un[cos21S dq(n)
•dp(n)

udq(n)uudp(n)u
D . ~2!

Figure 4 is the graph for the time average^un& as a function
of exponent numbern except for the ones corresponding
the zero-Lyapunov exponents. Here, again the time ave
of the angleun is the arithmetic average of the values imm
diately after collisions, for 1000N collisions.

In Fig. 4, we also plotted the anglesun at an instant time
in order to know magnitudes of their fluctuations. This gra
shows that the spatial partdq(n) and the momentum par
dp(n) of the Lyapunov vector are pointed in almost the sa
direction for n51,2, . . . ,2N23 and in almost the opposit
direction for n52N14,2N15, . . . ,4N. This fact suggests
that if we get a structure in the vectordq(n), then we may

i-
e-

e
c-
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expect a similar structure in the vectordp(n), and vice versa.
It should also be noted that this gives a justification for so
approaches to the Lyapunov exponents in which
Lyapunov exponents are calculated through the spatial c
dinate part only~or the momentum part! of the Lyapunov
vector @18,29#. For this reason, in this paper we concentr
mainly on the structure of the spatial part of the Lyapun
vectors, and omit discussion of the structure of the mom
tum part. Using the symplectic property of Hamiltonian d
namics, if the Lyapunov vectordGn5(dq(n),dp(n))T corre-
sponds to the Lyapunov exponentln , then its conjugate
Lyapunov vector dG4N2n115(dq(4N2n11),dp(4N2n11))T

corresponding to the Lyapunov exponentl4N2n1152ln is
dG4N2n1156(dp(n),2dq(n))T @1#, so the graph ofun , n
51,2, . . . ,2N23, and u4N2n11 , n51,2, . . . ,2N23, is
symmetric with respect to the lineun /p51/2 at any instant
of time, becausedq(4N2n11)

•dp(4N2n11)52dq(n)
•dp(n).

Another important point to obtain a clear stepwise str
ture in the Lyapunov spectrum is the choice of the parti
density. Even if we restrict our consideration to quasi-o
dimensional systems, the shape of the Lyapunov spect
depends on the particle density, so we should choose a
sity that gives a clearly visible stepwise structure in t
Lyapunov spectrum with two-point steps differentiated fro
four-point steps. Figure 5~a! is the Lyapunov spectra norma
ized by the maximum Lyapunov exponent for a quasi-o
dimensional system of 50 hard disks (N550) with periodic
boundary conditions in both directions. We also give an
larged Fig. 5~b! for the small Lyapunov exponent region
Here the system parameters are given byR51, Ly52R(1
11026), Lx5NLy(11d), and we usedM51 and E5N.
The five Lyapunov spectra correspond to the states od
51024 ~circles, r50.7853 . . . ), d51021 ~triangles, r
50.7139 . . . ), d51 ~squares,r50.3926 . . . ), d510 ~dia-
monds, r50.07 139 . . . ), d5102 ~inverted triangles,r
50.007 776 . . . ). The maximum Lyapunov exponentsl1
are given approximately by 3.62, 2.44, 0.934, 0.279, a

FIG. 4. Time-averaged anglêun& and instantaneous anglesun

between the spatial partdq(n) and the momentum partdp(n) of the
Lyapunov vector dGn5(dq(n),dp(n))T corresponding to the
Lyapunov exponentln in the ten-hard-disk system with the period
boundary conditions in both directions.
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0.0579, respectively. As shown in Figs. 5~a! and 5~b!, for
smaller values of the quantityd ~that is, higher particle den
sity!, the gaps between the nearest steps of the Lyapu
spectrum become larger, although the stepwise region of
Lyapunov spectrum does not seem to depend on the qua
d. This means that we can get a clear stepwise structure
the Lyapunov spectrum in the smalld case~that is, at high
density!.

In Fig. 5~b!, the Lyapunov exponents accompanyin
wavelike structures~constant behaviors! in the time-averaged
Lyapunov vector componentŝdqy j

(n)&, as functions of the
position^qx j&, are shown as the black~gray! symbols. In the

FIG. 5. The density dependence of the Lyapunov spectrum
malized by the maximum Lyapunov exponent for the quasi-o
dimensional system withN550 and periodic boundary condition
in both directions. The five Lyapunov spectra correspond toLy

52R(111026), Lx5NLy(11d) with d51024 ~circles!, d
51021 ~triangles!, d51 ~squares!, d510 ~diamonds!, d5102 ~in-
verted triangles!. ~a! Full scale.~b! The small positive Lyapunov
exponent region including the stepwise structure of the Lyapu
spectra. In~b!, filled black symbols correspond to the Lyapuno
exponents for which the time-averaged Lyapunov vector com
nentŝ dqy j

(n)& as a function of̂ qx j& show wavelike structures. Filled
gray symbols are for the Lyapunov vectors whose behavior is c
stant.
8-5
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 026218 ~2003!
smalld case, looking from the zero-Lyapunov exponents,
two-point step appears first@seed51024, 1021 and 1 in Fig.
5~b!#, whereas the four-point step appears first in the largd
case~seed5101 andd5102). Besides, at least in the sma
d case, the two-point steps and four-point steps do not ap
repeatedly~seed51024 and 1021). These facts mean tha
the sequence of steps in the Lyapunov spectrum depend
the quantityd, and therefore on the particle density.

The wavelike structures in the time-averaged Lyapun
vector componentŝdqy j

(n)& as functions of the position̂qx j&
~namely, the transverse spatial translational invaria
Lyapunov modes! appear mainly in the two-point steps of th
Lyapunov spectra. Therefore, we can use these wave
structures to distinguish two-point steps from four-po
steps in the Lyapunov spectra. However, such a crite
sometimes seems to fail in steps of the Lyapunov spe
near a region where the spectra are changing smoothly.
tually, the transverse Lyapunov modes may appear eve
some apparently four-point steps, if they are near suc
smoothly changing Lyapunov spectrum region. On the ot
hand, in such a region of the Lyapunov spectra, the fluc
tions of Lyapunov vectors are rather large, and the wave
structure becomes vague. In Fig. 5~b!, we did not indicate
with black-filled symbols the Lyapunov exponents who
corresponding Lyapunov vector components^dqy j

(n)& as func-
tions of the position̂ qx j& show vague wavelike structures

Based on the discussions in this section, in the follow
two sections we consider only the case with system par
eters given byN575, R51, M51, andE5N. The height
and the width of the system are given byLy52R(1
11026) and Lx51.5NLy ~the densityr50.5235 . . . ) for
the purely periodic boundary case. In this case, as will
shown in the following section, we can recognize at least t
clear sequences of two-point steps then four-point steps
the Lyapunov spectrum for this system. We always take
time-averaged quantitieŝdqy j

(n)& and ^qx j& of the quantities
dqy j

(n) andqx j , respectively, as the arithmetic average of th
values taken at times immediately after collisions, over 10N
collisions. We calculated more than 23105 collisions (106

collisions in some of the models! in order to get the
Lyapunov spectra and the Lyapunov vectors in the mod
presented in this paper.

III. QUASI-ONE-DIMENSIONAL SYSTEMS WITH
PERIODIC BOUNDARY CONDITIONS

In this section, we consider the Lyapunov spectrum
the quasi-one-dimensional system with periodic bound
conditions in both the directions (P,P). A schematic illus-
tration of this system for latter comparisons is given in Fig

FIG. 6. A schematic illustration of a quasi-one-dimensional s
tem with periodic boundary conditions in both directions. T
dashed lines indicate periodic boundary conditions along
boundary.
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in which the dashed line along the boundary means perio
boundary conditions. This system satisfies spatial tran
tional invariance in both directions, and is regarded as a
erence model for the models considered in the follow
section.

Figure 7 is the small positive Lyapunov exponent regi
of the Lyapunov spectrum normalized by the maximu
Lyapunov exponentl1'1.33, including its stepwise region
for a quasi-one-dimensional system with periodic bound
conditions in both the directions. The global shape of
Lyapunov spectrum is given in the inset in this figure. W
used the values of the system parameters chosen at the e
the preceding section. At least five steps consisting of th
two-point steps and two four-point steps are clearly visible
this Lyapunov spectrum with the sequence of steps be
2-4-2-4-2.

The two-point steps of the Lyapunov spectrum acco
pany wavelike structures in their corresponding Lyapun
vectors. Figure 8 is the graph of the time-averaged Lyapu
vector componentŝdqy j

(n)& corresponding to the Lyapuno
exponentsl149, l147, l146, l141 and l140, as functions of
the time-averaged position component^qx j& normalized by
the lengthLx ~the mode@Ts#). The Lyapunov exponents
used for this figure are shown as the black or gray circ
in Fig. 7. In this figure, we also give fits of the numeric
data to sinusoidal equations or a constant function~where
appropriate!. The fitting equations arey5ancos(2px1bn)
for n5147,146 @(a147,b147)5(20.16 132,24.5575!,
(a146,b146)5(20.161 25,0.149 28)], andy5ancos(4px
1bn) for n5141,140 @(a141,b141)5(20.157 75,
20.305 81), (a140,b140)5(0.157 82,1.2666)]. It is impor-
tant to note the relationsua147u'ua146u, ua141u'ua140u, b146
2b147'3p/2, andb1402b141'p/2, meaning that the two
wavelike structures in the same two-point step are ortho
nal to each other. In Fig. 8, we also draw a graph of
averaged Lyapunov vector component^dqy j

(n)& as a function

-

at

FIG. 7. The stepwise structure of the Lyapunov spectrum n
malized by the maximum Lyapunov exponent for a quasi-o
dimensional system with periodic boundary conditions in both
rections. Inset: Full scale for the normalized Lyapunov spectru
The circles are filled black~gray! in the Lyapunov exponents cor
responding to wavelike structures~constant behavior! of the time-
averaged Lyapunov vector components^dqy j

(n)& shown in Fig. 8.
8-6
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
of the normalized position̂qx j&/Lx corresponding to the sec
ond zero-Lyapunov exponentl149, which is approximately
constant, and is fitted by a constant functiony5a149 with the
fitting parameter valuea14950.018 901. These results su
gest the following conjecture for the approximate form of t
Lyapunov vector componentsdqy j

[n(k)] and dqy j
[n(k)21] corre-

sponding to the Lyapunov exponentsln(k) andln(k)21 in the
samekth two-point step counting from the zero-Lyapuno
exponents as

$dqy j
[n(k)] ,dqy j

[n(k)21]%

'H akcosS 2pk

Lx
qx j1bkD ,aksinS 2pk

Lx
qx j1bkD J ,

~3!

j 51,2, . . . ,N with constantsak and bk . ~Note that we
count the sequence of steps of the Lyapunov spectra be
ning from the zero-Lyapunov exponents, so for example,
first two-point step consists of exponentsl147 andl146 and
the second two-point step consists of exponentsl141 and
l140 in Fig. 7.! Note that the constantak in Eq. ~3! is deter-
mined by the normalization condition for the Lyapunov ve
tor in Benettin’s algorithm.

It should be emphasized that the wavelike structures
Figs. 3 and 8 correspond to the two-point steps of
Lyapunov spectrum. We cannot recognize such a clear w
like structure in the graph of the Lyapunov vector compon
^dqy j

(n)& as a function of the position̂qx j& for the four-point
steps in the Lyapunov spectrum. This suggests that the ph

FIG. 8. The time-averaged Lyapunov vector compone
^dqy j

(n)& as functions of the time average^qx j&/Lx of the normalized
x component of thej th particle for the Lyapunov exponentsl149,
l147, l146, l141, and l140 for the quasi-one-dimensional syste
with the periodic boundary conditions in both directions. The c
responding Lyapunov exponents are shown as the gray- and b
filled circles in Fig. 7. The numerical data are fitted by a const
function and sinusoidal functions.
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cal meaning of the four-point steps is different from that
two-point steps, and we should consider a different quan
to characterize the Lyapunov vectors of the four-point ste
Now, as one of the important results of this paper, we sh
that the wavelike structures in the quantitiesdqy j

(n)/py j as
functions ofqx j and the collision number appear in the fou
point steps of the Lyapunov spectrum. As a motivation
the introduction of the quantitydqy j

(n)/py j , we note that a
small perturbation of the spatial coordinates of the partic
in the direction of the orbit, namely,dq}p, leads to a zero-
Lyapunov exponent, so that the quantitiesdqy j

(n)/py j , j
51,2, . . . ,N, should give a constant value corresponding
this zero-Lyapunov exponent. This is the common feature
the quantitydqy j

(n) , which shows a constant behavior corr
sponding to one of the zero-Lyapunov exponents due to s
tial translational invariance, and whose wavelike struct
we have already discussed.

Before showing graphs ofdqy j
(n)/py j , we discuss some

s

-
ck-
t

FIG. 9. Local time-averaged quantities^dqy j
(n)/py j& t as functions

of the normalized position̂qx j& t /Lx and the collision numbernt

corresponding to~a! the Lyapunov exponentl142 in the first four-
point step and~b! the Lyapunov exponentl139 in the second four-
point step in the same collision number interval@543 000,548 100#.
The system is the quasi-one-dimensional system with the peri
boundary conditions in both directions, and the correspond
Lyapunov exponents are indicated by arrows in Fig. 7. In the c
tour plots on the bottoms of these three-dimensional plots, do
lines, solid lines, and dashed lines correspond to the va
^dqy j

(n)/py j& t50.08, 0, and20.08, respectively.
8-7
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FIG. 10. Contour plots of the local-time averaged quantities^dqy j
(n)/py j& t as functions of the normalized position^qx j& t /Lx and the

collision numbernt corresponding to the first four-point step consisting of the Lyapunov exponentsl145, l144, l143, andl142, in the same
collision number interval@538 500,548 100#. Here dotted lines, solid lines, and dashed lines correspond to the values^dqy j

(n)/py j& t

50.08, 0, and20.08, respectively. The system is the quasi-one-dimensional system with periodic boundary conditions in both dir
and the corresponding Lyapunov exponents are those indicated by the brace under open circles in Fig. 7.
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difficulties in the investigation of wavelike structure in the
quantities. It is much harder to observe the wavelike str
ture in these quantities corresponding to the four-point ste
compared to the quantitiesdqy j

(n) corresponding to the two
point steps, for at least two reasons. First, the fluctuation
the wavelike structure of the quantitiesdqy j

(n)/py j is much
larger than those in the wavelike structure of the quanti
dqy j

(n) , partly because the fluctuation is magnified whenpy j

appearing in the denominator has a small absolute va
Second, the wavelike structure of the quantitydqy j

(n)/py j os-
cillates periodically in time, whereas the wavelike structu
of the quantitiesdqy j

(n) in Fig. 8 is stationary at least ove
more than 100N collisions. This fact gives an upper boun
on the time period~or the collision number interval! over
which we can take the time average ofdqy j

(n)/py j in order to
suppress the fluctuations and still get their clear wave
structures. In this paper, we express the local time avera
of the quantitiesdqy

(n)/py j and qx j as ^dqy j
(n)/py j& t and

^qx j& t , respectively, with the suffixt to remind us that they
can change in time.

In this and the following, sections, we will give the grap
of dqy j

(n)/py j as functions ofqx j and the collision number by
taking their local time averages, so here we summarize h
we calculate the data for those graphs from a technical p
of view. First we take the arithmetic time averag
^dqy j

(n)/py j& t and ^qx j& t of the quantitiesdqy j
(n)/py j and qx j ,

respectively, using their values just after particle collisio
over 4N collisions (8N collisions!, but if the absolute value
02621
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upy ju of the momentum is less than 5%~10%! of the aver-
aged momentum amplitudesA2ME/N, then we exclude the
quantitydqy j

(n)/py j at that time from samples to take this loc
time average, in the models of this section and Sec. IV A~in
the models of the Secs. IV B and IV C!. @Therefore, the
sample number for taking the arithmetic averages can be
than 4N (8N) in the models of this section and Sec. IV A~in
the models of Secs. IV B and IV C!.# Even with this local
time average, we can still get more than ten locally tim
averaged data points per period for the modes with the sl
est time-oscillating movement of the quantitydqy j

(n)/py j cor-
responding to a step of the Lyapunov spectra, for exam
corresponding to the first four-point step of the model in t
section. In this paper, we consider the graph of the quan
^dqy j

(n)/py j& t as a function of̂ qx j& t and nt , wherent is the
first collision number contained in the interval over whic
the time average is taken,^¯& t .

Figures 9~a! and 9~b! are the graphs of the quantit
^dqy j

(n)/py j& t as functions of the normalized positio
^qx j& t /Lx and the collision numbernt , corresponding to the
Lyapunov exponentsl145 and l139, respectively, indicated
by arrows in Fig. 7. These two graphs correspond to
Lyapunov exponents in different four-point steps and
same collision number interval is used,@543 000,548 100#.
In the graph corresponding to the Lyapunov exponentl145
(l139), we can recognize a spatial wavelike structure
wavelength 1 (1/2) oscillating in time. The time-oscillatin
period corresponding to the Lyapunov exponentl139 is about
8-8
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
half of the period of the oscillation corresponding tol145.
These graphs, especially Fig. 9~b!, are the most difficult
graphs in which to recognize the wavelike structures in th
three-dimensional plots, and in order to recognize the st
tures the contour plots given in the bottoms of these t
three-dimensional plots may be helpful. In these cont
plots we show mountain regions where (^dqy j

(n)/py j& t

50.08) by dotted contour lines, and valley regions wh
(^dqy j

(n)/py j& t520.08) by dashed contour lines. The so
contour lines correspond tôdqy j

(n)/py j& t50.
Now we consider the relationship between the quanti

^dqy j
(n)/py j& t in the Lyapunov modes for the first four-poin

step. Figure 10 contains the contour plots of the quan
^dqy j

(n)/py j& t as a function of the normalized positio
^qx j& t /Lx and the collision numbernt for the first four-point
step consisting of the Lyapunov exponentsl145, l144, l143,
and l142, over the same collision number interv
@538 500,548 100#. Here, dotted lines, solid lines, an
dashed lines correspond tôdqy j

(n)/py j& t50.08, 0, and
20.08, respectively. It is clear that in these four graphs th
spatial wavelengths~determined byLx) and time-oscillating
periods ~determined byT0) are almost the same.~In this
paper, we use the quantityT0 as the period in units of the
particle-particle collision number, but we can convert it in
the real time interval by multiplying by the mean free tim
which is about 0.0243 for this system.! On the other hand
we can recognize that the position of the nodes of the sp
waves in graphs 10~a! and 10~b! as well as the nodes of th

FIG. 11. A schematic illustration of the phase relations amon
the four time-oscillating wavelike structures for the quantit
^dqy j

(n)/py j& t as functions of the position̂qx j& t and the collision
numbernt , for the first four-point step. The spatial wavelength a
the period of the time oscillations are given byLx andT0, respec-
tively. In each case, the collision number interval is the same. Th
gray lines are nodal lines, the region indicated by a plus sign (1) is
the region wherêdqy j

(n)/py j& t is positive, and the region indicate
by a minus sign (2) is the region wherêdqy j

(n)/py j& t is negative.
The phases in@P3# and @P4# differ from the phases in@P1# and
@P2# by a simple shift ofp/2 in the vertical~spatial! direction. The
phases in@P1# and@P3# differ from the phases in@P2# and@P4#
by a simple shift ofp/2 in horizontal~time! direction.
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spatial waves in graphs 10~c! and 10~d! coincide with each
other approximately, and the phase difference between
spatial waves in graphs 10~a! and 10~c! is approximately
p/2. Besides, the node of the time oscillation in graphs 10~a!
and 10~c! as well as the nodes of the time oscillation
graphs 10~b! and 10~d! coincide with each other approxi
mately, and the phase difference between time oscillation
graphs 10~a! and 10~b! is aboutp/2. These points are sum
marized in Fig. 11, which is a schematic illustration of t
phase relations amongst the time-oscillating wavelike str
tures for the quantitŷdqy j

(n)/py j& t . Here, the phases@P1#,
@P2#, @P3#, and @P4# correspond to those in Figs. 10~a!,
10~b!, 10~c!, and 10~d!, respectively. These observations su

gest that the Lyapunov vector componentsdqy j
[ ñ(k)] ,

dqy j
[ ñ(k)21] , dqy j

[ ñ(k)22] , anddqy j
[ ñ(k)23] corresponding to the

Lyapunov exponents for thekth four-point step can be ex
pressed approximately as

$dqy j
[ ñ(k)] ,dqy j

[ ñ(k)21] ,dqy j
[ ñ(k)22] ,dqy j

[ ñ(k)23]%

'H ãkpy jcosS 2pk

Lx
qx j1b̃kD cosS 2pk

T0
nt1g̃kD ,

ãkpy jcosS 2pk

Lx
qx j1b̃kD sinS 2pk

T0
nt1g̃kD ,

ãkpy jsinS 2pk

Lx
qx j1b̃kD cosS 2pk

T0
nt1g̃kD ,

ãkpy jsinS 2pk

Lx
qx j1b̃kD sinS 2pk

T0
nt1g̃kD J , ~4!

j 51,2, . . . ,N, with constantsãk , b̃k , andg̃k . It should be
emphasized that the level of agreement between Eq.~4! and
the numerical results for the four-point steps is worse th
the agreement between Eq.~3! and the numerical results fo
the two-point steps.

IV. QUASI-ONE-DIMENSIONAL SYSTEMS WITH
A HARD-WALL BOUNDARY CONDITION

In this section, we consider quasi-one-dimensional s
tems with varied boundary conditions, replacing periodic
hard-wall boundary conditions in one or both direction
Given that there are two directions in which we can intr
duce the hard-wall boundary conditions, we consider th
cases: (P,H), the case of periodic boundary conditions
the x direction and hard-wall boundary conditions in they
direction; (H,P), the case of hard-wall boundary condition
in the x direction and periodic boundary conditions in they
direction; and (H,H), the case of hard-wall boundary cond
tions in both the directions. Adopting the hard-wall bounda
condition in a particular direction breaks the spatial trans
tional invariance in that direction, so it allows us to discu
the role of momentum conservation in the stepwise struc

st

k
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 026218 ~2003!
of the Lyapunov spectrum by comparing models hav
hard-wall boundary conditions with models having period
boundary conditions. We will get different stepwise stru
tures for the Lyapunov spectra in the above three cases c
pared with the previous case, and the investigation of
corresponding Lyapunov vectors allows us to relate and
categorize them.

In the systems with a hard-wall boundary condition, w
should carefully choose the widthLx and the heightLy of the
systems for meaningful comparisons between the result
different systems. It should be noted that in systems w
pure periodic boundary conditions, the centers of partic
can reach to the periodic boundaries, while in hard-w
boundary conditions the centers of particles can only re
within a distanceR ~the particle radius! of the hard-wall
boundaries. In this sense, the effective region for particle
move in the system with hard-wall boundary conditions
smaller than that in the corresponding system with perio
boundary conditions, if we choose the same lengthsLx and
Ly . In this section, the lengthsLx andLy of the systems with
a hard-wall boundary condition are chosen so that the ef
tive region for a particle to move is the same as in the pur
periodic boundary case considered in the preceding sec
and are given by (Ly ,Lx)5„2R(111026)12R,1.5N(Ly
22R)… in the case (P,H), (Ly ,Lx)5„2R(1
11026),1.5NLy12R… in the case (H,P), and (Ly ,Lx)
5„2R(111026)12R,1.5N(Ly22R)12R… in the case
(H,H). These choices of the lengthsLx andLy also lead to
almost the same mean free time for particle-particle co
sions in the four different boundary condition cases. In
cases of (P,H) and (H,H) with this choice of the system
width Ly , there is, in principle, space for the particle po
tions to interchange in thex direction@that is, strictly speak-
ing these cases do not satisfy the second condition of Eq.~1!#
but the space is extremely narrow~that is, 2R31026) so that
it is almost impossible for particle positions to actually
exchanged. Indeed, in our simulations no particle exchan
are observed.

A. The case of periodic boundary conditions in thex direction
and hard-wall boundary conditions in the y direction

The first case is the quasi-one-dimensional system w
periodic boundary conditions in thex direction and with
hard-wall boundary conditions in they direction@the bound-
ary case (P,H)]. A schematic illustration of this system i
given in Fig. 12 in which periodic boundary conditions a
hard-wall boundary conditions are represented as das
lines and bold solid lines, respectively.

FIG. 12. A schematic illustration of a quasi-one-dimensio
system with periodic boundary conditions in thex direction and
hard-wall boundary conditions in they direction, (P,H). The
dashed line on the boundary represents periodic boundary co
tions, and the solid line on the boundary represents hard-
boundary conditions.
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Figure 13 is the Lyapunov spectrum normalized by t
maximum Lyapunov exponentl1'1.30 for this system. In
this figure, we showed a small positive region of t
Lyapunov spectrum including its stepwise structures, wh
the full scale of the positive branch of the Lyapunov spe
trum is shown in the inset. In this system they component of
the total momentum is not conserved because of the h
wall boundary conditions in they direction, so there are only
four zero-Lyapunov exponents in this system. This figu
shows clearly that the steps of the Lyapunov spectrum c
sist of four-point steps only, and there is no two-point step
the Lyapunov spectrum which appears in the model d
cussed in the preceding section. Besides, we cannot re
nize a wavelike structure in the graph of Lyapunov vec
componentŝ dqy j

(n)& as a function of the position̂qx j& ~the
graph @Ts#) in this model. A comparison of this fact with
results in the previous model suggests that the two-point
of the Lyapunov spectrum in the preceding section should
strongly connected to the conservation of they component of
the total momentum.

We consider a relation between the four-point steps in
model of this section and in the model of the preceding s
tion by investigating the graph of the quantity^dqy j

(n)/py j& t as
a function of the normalized position̂qx j& t /Lx and the col-
lision numbernt ~the graph@Tt#). ~Note that in this paper
we usent as the collision, number of particle-particle coll
sions which does not include particle-wall collisions, in ord
to make the collision numbernt of the four different bound-
ary condition cases comparable.! Figure 14 presents graph
corresponding to the Lyapunov exponentl148 in the first
four-point step@Fig. 14~a!# and the Lyapunov exponentl144
in the second four-point step@Fig. 14~b!#, which are indi-
cated by arrows in Fig. 13, using the same collision num
interval @390 600,396 000#. The wavelike structures of thes
graphs have a wavelength 1/i for the i th four-point steps. The
time-oscillating period corresponding to the Lyapunov exp
nent l148 is almost the same as the periodT0 of the first

l

di-
ll

FIG. 13. Stepwise structure of the Lyapunov spectrum norm
ized by the maximum Lyapunov exponent for the quasi-o
dimensional system with periodic boundary conditions in thex di-
rection and hard-wall boundary conditions in they direction. Inset:
Full scale of the normalized Lyapunov spectrum.
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
four-point steps of the previous model, and is approximat
twice as long as the time-oscillating period in the Lyapun
exponentl144 of this model. These features are comm
with the four-point steps in the models of the preceding s
tion, suggesting that the four-point steps of the Lyapun
spectrum in this model correspond to the four-point step
the model of the preceding section. We can also show
the quantities ^dqy j

(n)/py j& t corresponding to the zero
Lyapunov exponentsl150 and l149 are approximately con
stants as functions of̂qx j& t andnt .

Now we proceed to investigate the graph of the quanti
^dqy j

(n)/py j& t corresponding to the Lyapunov exponents in t
same four-point steps of the Lyapunov spectrum. Figure
shows the contour plots of these quantities as functions
the normalized position̂qx j& t /Lx and the collision numbe
nt , corresponding to the first four-point step consisting of
Lyapunov exponentsl148, l147, l146, andl145, in the same
collision number interval@385 800,396 000#. The corre-
sponding Lyapunov exponents are indicated by the brace

FIG. 14. Local time-averaged quantities^dqy j
(n)/py j& t as func-

tions of the normalized position̂qx j& t /Lx and the collision number
nt corresponding to the Lyapunov exponentsl148 and l144 in the
same collision number interval@390 600,396 000#. The system is
the quasi-one-dimensional system (P,H) with periodic boundary
conditions in thex direction and hard-wall boundary conditions
the y direction, and the corresponding Lyapunov exponents are
dicated by arrows in Fig. 13. Contour plots on the bottoms of th
three-dimensional plots are given by dotted lines, solid lines,
dashed lines corresponding to the values^dqy j

(n)/py j& t50.08, 0, and
20.08, respectively.
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der circles in Fig. 13. In this case, the contour lines
^dqy j

(n)/py j& t50 seem to be slanting, but if we pay attentio
to the mountain regions and the valley regions in the
graphs then we can realize that the structure of these
graphs are similar to the contour plots of the four graphs
Fig. 10 for the previous model. Therefore, the phase relati
among the time-oscillating wavelike structures of the qu
tity ^dqy j

(n)/py j& t can be summarized in the schematic illu
tration given in Fig. 11 such as in the previous model. T
suggests an approximate expression for the Lyapunov ve
components given by Eq.~4!, for Lyapunov vector compo-
nentsdqy j

(n) corresponding to the Lyapunov exponents of t
four-point steps in this model.

B. The case of hard-wall boundary conditions in thex
direction and periodic boundary conditions in the y direction

As the next system, we consider a quasi-one-dimensio
system with hard-wall boundary conditions in thex direction
and periodic boundary conditions in they direction @the
boundary case (H,P)]. A schematic illustration of such a
system is given in Fig. 16 with solid lines for the hard-wa
boundary conditions and dashed lines for the periodic bou
ary conditions.

In this system, thex component of the total momentum
not conserved, so the total number of the zero-Lyapun
exponents is 4. Figure 17 is a small positive region of
Lyapunov spectrum normalized by the maximum Lyapun
exponentl1'1.30, including its stepwise structure, while i
whole positive part of the Lyapunov spectrum is given in t
inset. The stepwise structure of the Lyapunov spectrum
clearly different from the model of Sec. IV A, and consists
two-point steps interrupted by isolated single-Lyapunov
ponents.~We call the isolated single-Lyapunov exponents
terrupting the two-point steps ‘‘one-point steps’’ from no
on, partly because they are connected to the two-point s
in the model of Sec. III as will be shown in this section.! As
discussed in Sec. III, the Lyapunov spectrum for the mo
with periodic boundary conditions in both directions h
two-point steps and four-point steps, and it is remarkable
adopting hard-wall boundary conditions in thex direction
and destroying the total momentum conservation in this
rection halve the step widths of both kinds of steps.

Figure 18 shows the graphs of the time-averag
Lyapunov vector components^dqy j

(n)& as functions of the nor-
malized position̂ qx j&/Lx ~the mode@Ts#), corresponding to
the one-point steps. We can clearly recognize wavelike st
tures in these graphs, and in this sense the one-point ste
this model should be strongly related to the two-point ste
in the model of Sec. III. The Lyapunov exponents accom
nying wavelike structure of this kind of graphs are shown
Fig. 17 as black-filled circle dots, meaning that they are
one-point steps. In Fig. 17, we also filled the circle symb
with gray for one of the zero-Lyapunov exponents in whi
the graph of the Lyapunov vector components^dqy j

(n)& as a
function of the position^qx j& is constant approximately
However, it is important to note that the wavelength of t
wave corresponding to thei th one-point step in this model i
2/i , not 1/i as in the model of Sec. III. We fitted the graph

-
e
d
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FIG. 15. Contour plots of the time-averaged quantities^dqy j
(n)/py j& t as functions of the normalized position^qx j& t /Lx and the collision

numbernt corresponding to the first four-point step consisting of the Lyapunov exponentsl148, l147, l146, andl145, in the same collision
number interval@385 800,396 000#. The system is the quasi-one-dimensional system (P,H) with periodic boundary conditions in thex
direction and hard-wall boundary conditions in they direction, and the corresponding Lyapunov exponents are indicated by the brace
circles in Fig. 13. Here dotted lines, solid lines, and dashed lines correspond to the values^dqy j

(n)/py j& t50.08, 0, and20.08, respectively.
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corresponding to the Lyapunov exponentsl149, l148, l145,
and l142 by the functions y5a149,a148cos(px
1b148),a145cos(2px1b145),a142cos(3px1b142), respec-
tively, with an andbn as fitting parameters. Here, the valu
of the fitting parameters were found to bea14950.115 47,
(a148,b148)5(0.162 13,20.008 977 8), (a145,b145)
5(20.162 02,20.010 07), and (a142,b142)
5(20.159 45,0.008 914 8). The graphs are very nicely fit
by a constant or the sinusoidal functions, and lead to
form

dqy j
[n(k)]'ak8cosS pk

Lx
qx j1bk8D , ~5!

j 51,2, . . . ,N, of the Lyapunov vector componentdqy j
[n(k)]

corresponding to the Lyapunov exponentsln(k) in the kth
one-point step with constantsak8 andbk8 .

Now we investigate the remaining steps, namely, the tw
point steps of the Lyapunov spectrum. Corresponding

FIG. 16. A schematic illustration of a quasi-one-dimensio
system (H,P) with hard-wall boundary conditions in thex direction
and periodic boundary conditions in they direction. The solid lines
for the boundary represent hard-wall boundary conditions,
dashed lines represent periodic boundary conditions.
02621
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these two-point steps of the Lyapunov spectrum, the gra
of the quantity^dqy j

(n)/py j& t as functions of the normalized
position ^qx j& t /Lx and the collision numbernt ~the mode
@Tt#) show spatial wavelike structures oscillating in time.
is shown in Fig. 19 for those graphs corresponding

l

d

FIG. 17. Stepwise structure of the Lyapunov spectrum norm
ized by the maximum Lyapunov exponent for the quasi-o
dimensional system with hard-wall boundary conditions in thex
direction and periodic boundary conditions in they direction. Inset:
Full scale of the normalized Lyapunov spectrum. The circle d
filled by black ~gray! are the Lyapunov exponents accompanyi
wavelike structure~a constant behavior! of the Lyapunov vector
componentŝdqy j

(n)& partly shown in Fig. 18.
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
Lyapunov exponents~indicated by arrows in Fig. 17! in dif-
ferent two-point steps, in the same collision number inter
@222 000,232 200#. The spatial wavelength of the waves co
responding to thei th two-point step is 2/i , which is twice as
long as the wavelength of waves of the four-point steps
the models in Sec. III and the preceding section. The pe
of time oscillation of the wave corresponding to thei th two-
point step of the Lyapunov spectrum is approximately giv
by T 08/ i with a constantT 08 . The graph corresponding to on
of the zero-Lyapunov exponents, namelyl150, is almost
constant.

It is important to note the relation between the tim
oscillating periodT0 of the preceding two models and th
time-oscillating periodT 08 of the model in this section
Noting that in Figs. 9~a!, 14~a!, and 19~a! we plotted
about one period of the time oscillation of the waveli
structures of the quantitieŝdqy j

(n)/py j& t in the collision time
intervals @543 000,548 100#, @390 600,396 000#, and
@222 000,232 200#, respectively, we can get an approxima
relationT 08'2T0.

The next problem is to investigate the graphs of the qu
tities ^dqy j

(n)/py j& t as a function of the position̂qx j& t and the
collision number nt in the same two-point step of th
Lyapunov spectrum. Figure 20 shows the contour plots
such graphs for the first two-point step consisting of
Lyapunov exponentsl147 andl146, which is indicated by a
brace under circles in Fig. 17, in the same collision num
interval @212 400,232 200#. It should be noted that the pos
tions of the nodes of two spatial waves belonging to the sa
two-point step almost coincide with each other. However,

FIG. 18. Time-averaged Lyapunov vector components^dqy j
(n)&

corresponding to the Lyapunov exponentsl149, l148, l145, and
l142, as functions of the time-averaged particle position^qx j&/Lx

normalized by the system lengthLx . The system is the quasi-one
dimensional system (H,P) with hard-wall boundary conditions in
the x direction and periodic boundary conditions in they direction,
and the corresponding Lyapunov exponents are shown as the b
and gray-filled circles in Fig. 17. The numerical data are fitted
either a constant or sinusoidal function.
02621
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phases of the time oscillations of the amplitudes of the wa
are shifted by aboutp/2 with each other. The phase relation
of graphs 20~a! and 20~b! are visualized in the schemati
illustration given in Fig. 21 of the time-oscillating wavelik
structures of the quantitieŝdqy j

(n)/py j& t corresponding to the

ck-
y

FIG. 19. Local time-averaged quantities^dqy j
(n)/py j& t as func-

tions of the normalized position̂qx j& t /Lx and the collision number
nt corresponding to the Lyapunov exponentsl147, l144, andl141,
in the same collision number interval@222 000,232 200#. The sys-
tem is the quasi-one-dimensional system (H,P) with hard-wall
boundary conditions in thex direction and periodic boundary con
ditions in they direction, and the corresponding Lyapunov exp
nents are indicated by arrows in Fig. 17. Contour plots on the b
toms of these three-dimensional plots are given by dotted lin
solid lines, and dashed lines corresponding to the val
^dqy j

(n)/py j& t50.08, 0, and20.08, respectively.
8-13
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T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E68, 026218 ~2003!
FIG. 20. Contour plots of the local time-averaged quantit
^dqy j

(n)/py j& t as functions of the normalized position^qx j& t /Lx and
the collision numbernt corresponding to the first two-point ste
consisting of the Lyapunov exponentsl147 and l146, in the same
collision number interval@212 400,232 200#. The system is the
quasi-one-dimensional system (H,P) with hard-wall boundary con-
ditions in thex direction and periodic boundary conditions in they
direction, and the corresponding Lyapunov exponents are indic
by the brace under circles in Fig. 17. Here dotted lines, solid lin
and dashed lines correspond to the values^dqy j

(n)/py j& t50.08, 0,
and20.08, respectively.

FIG. 21. Schematic illustration of the phase relations among
time-oscillating wavelike structures of the quantities^dqy j

(n)/py j& t as
functions of the position̂qx j& t and the collision numbernt , corre-
sponding to the first two-point step in the same collision num
interval. Thick gray lines mean node lines, the region indicated b
plus sign (1) is the region where the quantity^dqy j

(n)/py j& t is posi-
tive, and the region indicated by a minus sign (2) is the region
where the quantitŷdqy j

(n)/py j& t is negative. The phase of@P18# is
shifted in time from the phase of@P28# by p/2.
02621
first two-point step in the same collision number interv
Here the phases@P18# and@P28# correspond to Figs. 20~a!
and 20~b!, respectively. A similar investigation of th
Lyapunov vectors shows that the time-oscillating wavel
structures for the second two-point steps are like those
phases@P1# and@P2# of Fig. 11 except that the periodT0 in
Fig. 11 should be replaced with the oscillating periodT 08 of
this model. These results suggest that the two-point step
this model correspond to the four-point steps in the mod
of Secs. IV A and III, except for differences in the values
their wavelengths and time-oscillating periods. After all w
get a conjecture that the Lyapunov vector compone

dqy j
[ ñ(k)] anddqy j

[ ñ(k)21] corresponding to the Lyapunov expo
nents constructing thekth two-point step are approximatel
expressed as

$dqy j
[ ñ(k)] ,dqy j

[ ñ(k)21]%

'H ãk8py jcosS pk

Lx
qx j1b̃k8D cosS pk

T0
nt1g̃k8D ,

ãk8py jcosS pk

Lx
qx j1b̃k8D sinS pk

T0
nt1g̃k8D J , ~6!

j 51,2, . . . ,N with constantsãk8 , b̃k8 , and g̃k8 , noting the
time-oscillating periodT08'2T0.

C. The case of hard-wall boundary conditions
in both directions

The last model is the case of hard-wall boundary con
tions in both directions@the boundary case (H,H)]. A sche-
matic illustration of this system is given in Fig. 22 in whic
the solid line of the boundary means to take hard-w
boundary conditions.

A small positive region of the Lyapunov spectrum no
malized by the maximum Lyapunov exponentl1'1.29 is
given in Fig. 23. The graph for the full scale of the positi
branch of the normalized Lyapunov spectrum is also given
the inset of this figure. In this system the total momentu
is not conserved anymore, and the total number of ze
Lyapunov exponents is 2. The stepwise structure of
Lyapunov spectrum consists of two-point steps only. In t
model, a wavelike structure in the Lyapunov vector comp
nent ^dqy j

(n)& as a function of the position̂qx j& ~the mode
@Ts#) is not observed.

Figure 24 shows the graphs of the quantities^dqy j
(n)/py j& t

as functions of the normalized position^qx j& t /Lx and the
collision numbernt ~the mode@Tt#), corresponding to the
Lyapunov exponentsl149, l147, and l145, using the same

s

ed
s,

e

r
a

FIG. 22. A schematic illustration of a quasi-one-dimension
system (H,H) with hard-wall boundary conditions in both direc
tions. The solid line on the boundary represents hard-wall bound
conditions.
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BOUNDARY EFFECTS IN THE STEPWISE STRUCTURE . . . PHYSICAL REVIEW E 68, 026218 ~2003!
collision number interval@235 200,246 000#. The corre-
sponding Lyapunov exponents are indicated by arrows
Fig. 23. This figure for the two-point steps of the Lyapun
spectrum shows a similar wavelike structure to the wave
structure of the quantitieŝdqy j

(n)/py j& t in the model of Sec.
IV B, although one may think that fluctuations of the
graphs in this model are much smaller than in the previ
model. This suggests that the two-point steps of
Lyapunov spectrum in Fig. 23 are similar to the two-po
steps in the model of Sec. IV B. The wavelength of the s
tial waves and the periods of the time oscillations cor
sponding to thei th two-point step are 2/i andT08/ i , respec-
tively, and the time-oscillating period of the first two-poi
step is given approximately by the same periodT08 ('2T0)
as in the model of Sec. IV B. It may also be noted that t
kind of graph corresponding to the zero-Lyapunov expon
l150 is almost constant.

Figure 25 shows the contour plots of the quantit
^dqy j

(n)/py j& t as functions of the normalized positio
^qx j& t /Lx and the collision numbernt corresponding to the
Lyapunov exponentsl149 andl148 in the first two-point step
of the Lyapunov spectrum in the same collision number
terval @223 800,246 000#. The corresponding Lyapunov ex
ponents are indicated by the brace under circles in Fig.
Similarly to the previous model, the nodes of two spat
waves corresponding to the same two-point step almost
incide with each other, and the phase of the time oscillat
of the wave amplitudes is shifted by aboutp/2. This also
says that the phase relations of graphs 25~a! and 25~b! are the
same type as the phase relations@P18# and@P28# in Fig. 21.
In a similar way, we can see that the time-oscillating wa
like structures for the second two-point steps of t
Lyapunov spectrum for this model are like the phases@P1#
and @P2# of Fig. 11 by replacing the periodT0 of Fig. 11
with the time-oscillating periodT 08'2T0 of this model.
These suggest an approximate expression for the Lyapu
vector components given by Eq.~6!, for Lyapunov vector
componentsdqy j

(n) corresponding to thenth Lyapunov expo-

FIG. 23. Stepwise structure of the Lyapunov spectrum norm
ized by the maximum Lyapunov exponent for a quasi-o
dimensional system with hard-wall boundary conditions in both
rections. Inset: Full scale of the normalized Lyapunov spectrum
02621
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nents of thekth two-point steps in this model. The fact th
the only difference between the model in this section and
model in Sec. IV B is the boundary conditions in they direc-
tion suggests that the one-point steps of the model in S
IV B come from the conservation of they component of the
total momentum.
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FIG. 24. Local time-averaged quantities^dqy j
(n)/py j& t as func-

tions of the normalized position̂qx j& t /Lx and the collision number
nt corresponding to the Lyapunov exponentsl149, l147, andl145,
in the same collision number interval@235 200,246 000#. The sys-
tem is the quasi-one-dimensional system (H,H) with hard-wall
boundary conditions in both directions, and the correspond
Lyapunov exponents are indicated by arrows in Fig. 23. Cont
plots on the bottoms of these three-dimensional plots are given
dotted lines, solid lines, and dashed lines corresponding to the
ues^dqy j

(n)/py j& t50.08, 0, and20.08, respectively.
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V. CONCLUSION AND REMARKS

In this paper, we have discussed numerically the stepw
structure of the Lyapunov spectra and its correspond
wavelike structures for the Lyapunov vectors in many-ha
disk systems. We concentrated on the quasi-one-dimens
system whose shape is a very narrow rectangle that doe
allow exchange of disk positions. In the quasi-on
dimensional system, we can get a stepwise structure of
Lyapunov spectrum in a relatively small system, for e
ample, even in a ten-particle system, whereas a fully tw
dimensional system would require many more particles
such a system, we have considered the following two pr
lems: ~a! How does the stepwise structure of the Lyapun
spectra depend on boundary conditions such as peri
boundary conditions and hard-wall boundary conditions?~b!
How can we categorize the stepwise structure of
Lyapunov spectra using the wavelike structure of the co
sponding Lyapunov vectors? To consider problem~a! also
means to investigate the effects of the loss of spatial tran
tional invariance on the stepwise structure of the Lyapun
spectra. In this paper, we considered four types of the bou
ary conditions; (P,P), purely periodic boundary conditions

FIG. 25. Contour plots of the local time-averaged quantit
^dqy j

(n)/py j& t as functions of the normalized position^qx j& t /Lx and
the collision numbernt corresponding to the first two-point ste
consisting of the Lyapunov exponentsl149 andl148 using the same
collision number interval@223 800,246 000#. The system is the
quasi-one-dimensional system (H,H) with hard-wall boundary con-
ditions in both directions, and the corresponding Lyapunov ex
nents are indicated by the brace under circles in Fig. 23. H
dotted lines, solid lines, and dashed lines correspond to the va
^dqy j

(n)/py j& t50.08, 0, and20.08, respectively.
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(P,H), periodic boundary conditions in thex direction and
hard-wall boundary conditions in they direction; (H,P),
hard-wall boundary conditions in thex direction and periodic
boundary conditions in they direction; and (H,H), purely
hard-wall boundary conditions, in a system of rectangu
shape where we took they direction as the narrow direction
With each boundary case, we obtained different stepw
structures of the Lyapunov spectra. For each boundary c
dition, we also considered graphs of the following tw
modes;@Ts#, they componentdqy j

(n) of the spatial coordinate
part of the Lyapunov vector of thej th particle corresponding
to the Lyapunov exponentln as a function of thex compo-
nent qx j of the spatial component of thej th particle, and
@Tt#, the quantitydqy j

(n)/py j with they componentpy j of the
momentum coordinate of thej th particle as a function of the
position qx j and the collision numbernt . These quantities
dqy j

(n) anddqy j
(n)/py j give constant values in some of the zer

Lyapunov exponents, at least approximately. We found t
the steps of the Lyapunov spectra accompany a wave
structure in the quantitydqy j

(n) or dqy j
(n)/py j , depending on

the kind of steps of the Lyapunov spectra. A time-depend
oscillating behavior appears in the wavelike structure of
quantity dqy j

(n)/py j , whereas the wavelike structure of th
quantitydqy j

(n) is essentially stationary. Fluctuations of the
quantitiesdqy j

(n) and dqy j
(n)/py j disturb their clear oscillatory

structures, so we took a time average of these quantitie~a
local time average for the quantitydqy j

(n)/py j because of its
time-oscillating behavior, and a longer time-average for
quantity dqy j

(n) because it is much more stationary in tim
than the quantitydqy j

(n)/py j) to get their dominant wavelike
structures. In Table I, we summarize our results about a
egorization of the stepwise structures of the Lyapunov sp
tra by the wavelike structures of the Lyapunov vectors in
four boundary cases (P,P), (P,H), (H,P), and (H,H). In
Lyapunov exponents in each step of the Lyapunov spec
the wavelike structures of the quantitydqy j

(n) or dqy j
(n)/py j are

approximately orthogonal to each other in space@in the sense
of Eq. ~3!#, in space and time@in the sense of Eq.~4!#, or in
time @in the sense of Eq.~6!#, and this fact suggests that th
wavelike structures of these quantities are sufficient to c
egorize the stepwise structure of the Lyapunov spectra in
quasi-one-dimensional systems considered here.

Hard-wall boundary conditions may be emulated in
infinite system by reflecting the positions and velocities of
particles at each hard wall. The infinite system modes t
survive are those that satisfy the reflection symmetries.
translational modes this requires combinations that prod
standing waves, with nodes at the walls for modes with
viations normal to the wall, and antinodes for modes w
deviations parallel to the wall, if the modes of the ent
system are connected smoothly at the walls. Further,
hard-wall systems the number ofk values allowed is doubled
because half periods are also allowed. In this way, we m
begin developing a theoretical picture that predicts the ty
of Lyapunov modes and the range ofk values for which these
modes are stable. Although this is the ultimate goal of th
numerical investigations, the complete theoretical desc
tion remains an open problem.
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TABLE I. The categorization of the stepwise structures of the Lyapunov spectra and the associated wavelike structures of the
vectors in two-dimensional rectangular systems with the four boundary cases considered in this paper. The case (P,P) is the purely periodic
boundary case~Sec. III! represented in Fig. 6, the case (P,H) is the periodic boundary condition in thex direction and hard-wall boundary
condition in they direction ~Sec. IV A! represented in Fig. 12, the case (H,P) is the hard-wall boundary condition in thex direction and
periodic boundary condition in they direction ~Sec. IV B! represented in Fig. 16, and the case (H,H) is the purely hard-wall boundary
condition~Sec. IV C! represented in Fig. 22. Here we took they direction as the narrow direction of the rectangle and thex direction as the
longer orthogonal direction. The mode@Ts# j is the stationary transverse Lyapunov mode appearing indqy j

(n) as a function ofqx j , and the
mode@Tt# j is a spatial wavelike structure with a time oscillation indqy j

(n)/py j as a function ofqx j and time. The sufficesj 51,2, . . . in the
label of modes@Ts# j and@Tt# j are the step numbers of the sequence in the Lyapunov spectra. In this table,S is the number of points in the
step~or the number of the zero-Lyapunov exponents in the line specified by the label ‘‘ln50’’ !, L is the wavelength of spatial wavelik
structure, andT is the period of time oscillation of the wave,Lx is the length of the quasi-one-dimensional rectangle, andT0 is constant.

(P,P) (P,H) (H,P) (H,H)
Mode S L T S L T S L T S L T
ln50 6 4 4 2
@Ts#1 2 Lx/1 1 2Lx/1
@Tt#1 4 Lx/1 T0/1 4 Lx/1 T0/1 2 2Lx/1 2T0/1 2 2Lx/1 2T0/1
@Ts#2 2 Lx/2 1 2Lx/2
@Tt#2 4 Lx/2 T0/2 4 Lx/2 T0/2 2 2Lx/2 2T0/2 2 2Lx/2 2T0/2
@Ts#3 A A A A A A 1 2Lx/3
@Tt#3 A A A A A A 2 2Lx/3 2T0/3 2 2Lx/3 2T0/3
A A A A A A A A A A A A A
a
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Different from a purely two-dimensional model such as
square system in which each particle can collide with a
other particle, in the quasi-one-dimensional model a sep
tion between the stepwise region and the smoothly chan
region of the Lyapunov spectrum is not clear. In Ref.@19#,
this point was explained as being caused by the fact
particles interact only with the two nearest-neighbor p
ticles, whereas in the purely two-dimensional low-dens
systems particles can interact with more than two particl

In this paper, we considered the quasi-one-dimensio
systems only. However, there should be many other inter
ing situations in which we can investigate structures of
Lyapunov spectrum and the Lyapunov vectors. For exam
we may investigate the effect of the rotational invariance
the system on such structures by considering a t
dimensional system with a circle shape. One might also
vestigate the system in which the orbit is not determinis
anymore, in order to know whether the deterministic or
plays an important role in the stepwise structure of
Lyapunov spectrum or not. It may also be important to
vestigate the dependence of the stepwise structures o
Lyapunov spectra on the spatial dimension of the system
example, to investigate any structure of the Lyapunov spe
for purely one- or three-dimensional many-particle syste
~Note that the quasi-one-dimensional systems considere
this paper are still two-dimensional systems in the sens
-
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the phase space dimension.! These problems remain to b
investigated in the future.

Finally, we wish to emphasize the important conclusio
of this work.

~1! For the system considered here, the quasi-o
dimensional model with various combinations of period
and hard-wall boundary conditions, we can interpret all
the Lyapunov modes as either due to spatial translatio
invariance@Ts# or due to time translational invariance@Tt#.
All modes are transverse, and no longitudinal modes h
been required@17# to categorize the Lyapunov modes. How
ever, this does not preclude the existence of longitudi
modes.

~2! It is necessary to include the time translational inva
ance to obtain Lyapunov modes for the purely hard-wall s
tem, as the system does not have any spatial translati
invariance but still exhibits a clear stepwise structure. The
fore, we conclude that spatial translational invariance alo
is not sufficient to explain the Lyapunov modes@20#.
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