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Boundary effects in the stepwise structure of the Lyapunov spectra and corresponding wavelike structure of
the Lyapunov vectors are discussed numerically in quasi-one-dimensional systems of many hard disks. Four
different types of boundary conditions are constructed by combinations of periodic boundary conditions and
hard-wall boundary conditions, and each leads to different stepwise structures of the Lyapunov spectra. We
show that for some Lyapunov exponents in the step region, the spati@nponent of the corresponding
Lyapunov vectorsqy;, divided by they component of momenturpy;, exhibits a wavelike structure as a
function of positiong,; and timet. For the other Lyapunov exponents in the step regionytbemponent of
the corresponding Lyapunov vectaq,; exhibits a time-independent wavelike structure as a functiog, pf
These two types of wavelike structure are used to categorize the type and sequence of steps in the Lyapunov
spectra for each different type of boundary condition.
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[. INTRODUCTION the existence of global or cooperative phenomena in the
Lyapunov vectors, the so called Lyapunov modes, which are
Microscopic chaos is one of the essential reasons to juswvavelike structures in the eigenvector associated with each
tify a statistical treatment of deterministic dynamical sys-degenerate Lyapunov exponent of the stepwise regierT].
tems. In a chaotic system, small initial errors diverge expo-This wavelike structure of the Lyapunov modes appears as a
nentially, as characterized quantitatively by the Lyapunowvfunction of the particle position and possibly the time, so this
exponents\,, and this means that it is not possible, in prin- structure connects the tangent space with the phase space.
ciple, to predict precisely all quantitiésther than conserved Although the Lyapunov vectors have been the subject of
guantitie$ of deterministic systems and a statistical treat-some studies for more than a decdfte example, see Refs.
ment of the system is required. It is well known that even[8-16)), it is remarkable that an observation of their global
one-particle systems can be chaotic and have some of ttsructure in fully chaotic hard-core many-particle systems
important statistical properties of many-body equilibrium has only recently appeared, despite the observation of step-
statistical mechanics such as mixing, etc. For this reasomyise structures in the Lyapunov spectrum of coupled map
many studies of chaotic behavior have been done in ondattices[8]. A possible reason for this may be the difficulty of
particle systems, for example, billiard systems and Lorentobserving Lyapunov modes in systems with soft interaction
gas model$1,2]. However, many-particle effects should still potentiald 17]. Explanations for the stepwise structure of the
play an important role in some statistical aspects, such as tHeyapunov spectra have been attempted using periodic orbit
central limit theorem, a justification of thermodynamical res-models[18] and using a master equation approdd9].
ervoirs, and critical phenomena, etc. Therefore, it is interestOther theoretical approaches to the Lyapunov modes have
ing, in general, to know which aspects of statistical mechaniincluded using a random matrix approach for a one-
cal systems are due to chaos and which are the combinatialimensional mod€]20], using a kinetic theoretical approach
of a chaotic effect and a many-patrticle effect. In other words[21], and by considering these as the “Goldstone modes”
what are the limitations of one-particle systems as models di22].
realistic systems. If the stepwise structure of the Lyapunov spectra is a re-
The stepwise structure of the Lyapunov spectrum, whicHlection of a global behavior of the system, then one may ask
was reported numerically in many-hard-disk systems, is on¢he question: Does such a structure depend on the boundary
such many-particle chaotic effef@—5]. Here, the Lyapunov conditions or the geometry of the system? One of the pur-
spectrum is introduced as the sorted{set,\,, ...} of the  poses of this paper is to answer this question using some
Lyapunov exponents satisfying the condition that=X\, simple systems. In this paper, we investigate numerically the
= ..., and isused to characterize the many-particle chaoticstepwise structure of the Lyapunov spectra, and the associ-
dynamics. The stepwise structure of the Lyapunov spectrurated Lyapunov modes, in systems of many hard disks, in
appears in the region of smallest Lyapunov exponéints two-dimensional rectangular geometry with four different
absolute valug This fact suggests that steps in the Lyapunovboundary conditions:K,P), purely periodic boundary con-
spectra are associated with slow modes and thus the macrdiions; (P,H), periodic boundary conditions in thedirec-
scopic behavior of the system. Small positive Lyapunov extion and hard-wall boundary conditions in tlyedirection;
ponents should correspond to slow growth processes ar(dH,P), hard-wall boundary conditions in thedirection and
small negative Lyapunov exponents should correspond tperiodic boundary conditions in thedirection; and H,H),
slow relaxation processes. This point is partly supported byurely hard-wall boundary conditions. In all cases, we took
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the y direction as the narrow direction of the rectangle andponentssq(?, 5q(, 8q{P/py;, and 8q\/p,; correspond
the x direction as the longer orthogonal direction. For caseo the zero-Lyapunov exponents of the purely periodic sys-
(P,P), the shape of the system is like the surface of aem, the first two are associated with spatial translational
doughnut, for P,H) and H,P) the system has the shape of invariance and the second two with the deterministic nature
the surface of pipe with hard walls at its ends. CdsdeR) is  of the orbit(time translational invariangeln this paper, we

a long pipe with small diameter while case,H) is a short  show that the quantitiesq? and 8q{/p,; as a function of
pipe with a large diameter. Caskl (H) is a system of rect-  q,; are sufficient to categorize the stepwise structure of the
angular shape surrounded by hard walls. Adopting hard-wallyapunov spectra of a quasi-one-dimensional system. More
boundary conditions in a particular direction destroys theconcretely, we consider two types of Lyapunov modes: the
spatial translational invariance in that direction, so by conquantity 5q§fj?) as a function of the position,;, the trans-
sidering these models we can investigate the effects of thgerse(spatial translational invariangeyapunov modé Ts],

absence of spatial translational invariance in each directiogng the quantitﬁqg})/pyj as a function of the position,;

separately, and in combination, on the stepwise structure ofng time(or collision numbey, the transverse time transla-
the Lyapunov spectra and existence of the Lyapunov modegigna) invariance Lyapunov modert]. In two-dimensional
This can be used to check some theoretical approaches {@tangular systems consisting of many hard disks with pe-
these phenomena such as those in Ref8-21, in which  jogic boundary conditionsR, P), it is known that there are
the consequences of spatial translational invariance play ag,q types of steps of the Lyapunov spectra: steps of degen-

essential role in explaining the stepwise structure of theeracy two and steps of degeneracy fE6y6]. The Lyapunov
Lyapunov spectra and the Lyapunov modes. We obtain difyqqrq associated with the two-point steps of the Lyapunov

fe_rent stepwise structures of the_l__yapunov spectra with eac pectrum are known to contain a wavelike structure of type
different type of boundary condition. In particular, we 0b- r+¢ 5 5 rectangular system. In this paper, we show that the
serve a stepwise structure of the Lyap'unov spectrum even R,y elike structure corresponding to the four-point steps of
the case of pure!y hard-wall boun_darleH,(-_|), where the the Lyapunov spectrum is of tyddt]. Further, we observe
total momentum is not conserved in any direction. time-dependent oscillations in the mofi€t], whereas the
Pﬁode[Ts] is stationary in time. The wavelike structure of

wise structure of the Lyapunov spectra according to thc% T - ;
; t] also appears in rectangular systems with hard-wall
wavelike structure of the Lyapunov modes. So far the Wavegc?uen[dar]ya condﬁgons[that is fgor P |¥|) (H.P), and

like structure of the Lyapunov vectors was reported in the

L h ‘ funci £ Dosili | (H,H)], and specifically in the case of purely hard-wall
yapunhov vector componen snas a function of position on y’boundary conditions where the transverse Lyapunov mode

f_or example, in the quantltﬁqg,j) as a function of th? pOSI- [Ts] does not appear. We show that the stepwise structure of
tion gy; (the transverse Lyapunov modet—6] and in the 4 o Lyapunov spectra in the boundary cases?), (P,H),
quantity 5q{7 as a function of the positiogy; (the longitu- (H.P), and (4,H) can be completely categorized by wave-
dinal Lyapunov modg[7,17], in which 5g{? (59) is they |ike structures of type§Ts] and[Tt].

component X component of the spatial part of the  one of the problems that make it difficult to investigate
Lyapunov vector of thgth particle corresponding to theh  the structure of the Lyapunov spectra and the Lyapunov
Lyapunov exponenk,, andgy; is thex component of the modes is that the calculation of a full Lyapunov spectra for a
spatial component of thgth particle. These wavelike struc- many-particle system is a very time-consuming numerical
tures appear in the stepwise region of the Lyapunov spegalculation. Therefore, it is important to use a system in
trum. However, it is not clear whether there is a direct conhich the stepwise structure of the Lyapunov spectra and the
nection between the sequence and the kind of steps in thg;apunov modes can be calculated as quickly as possible. It
Lyapunov spectrum and the associated Lyapunov modes, thgf known that a rectangular system has a wider stepwise re-
is, how to categorize the steps of the Lyapunov spectrungion in the Lyapunov spectrum than a square systefthe

by their Lyapunov modes. In a two-dimensional systemMsame arel[5]. Noting this, in this paper we concentrate on
with periOdiC bOUndary Conditions, the LyapUnOV VeCtOfSthe most Strong|y rectangu|ar system, name|y a quasi_one_
associated  with  the  zero-Lyapunov  exponentsdimensional system, in which the rectangle is so narrow that
(g™, 89\, 8p{,5p{™)T, n=2N-22N-1,...,N+3  particles cannot exchange their positions, thus the order of
can be written as linear combinations of the basis vectorghe particles is maintained and collisions can only occur be-
(2,0,0,0)", (0,2,0,00, (0,0,8,00", (0,0,0,8)",  tween neighboring particles. As will be shown in this paper,
(px,py,O,O)T, and (O,O,px,py)T, whereT is the transpose\l the stepwise structure of the Lyapunov spectrum for the
is the number of particle®) is anN-dimensional null vector, quasi-one-dimensional system is the same as for the fully
ay is an N-dimensional vector with all components equal, rectangular system which allows exchange of particle posi-
and py=(Py1,Px2s - - - Pxn) | [Py=(Py1,Py2, - - - ,pyN)T] is  tions and collisions between any pair of particles, and the
the N-dimensional vector whose components arexftem-  steps of the Lyapunov spectra consist of two-point steps and
ponentp,; (y componentp,;) of the momentum of th¢th  four-point steps, for the fully periodic cas® (P). Another
particle. If we restrict our consideration to the spatial com-advantage of using the guasi-one-dimensional system is that
ponents of the Lyapunov vector, we need only consider basis this system the roles of thedirection andy direction are
vectors with nonzero spatial components, thatjs ,0,0), separate, so, for example, we can expect the most clear dif-
(0,a9,0,0)7, and @X,pyj,O,O)T. The Lyapunov vector com- ference when applying hard-wall boundary in each case,
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FIG. 1. Quasi-one-dimensional system: A narrow rectangular < s o
system satisfying the conditio®Ny3<L, and R<L,<4R. (:.: 04 L oo |
(P,H) and H,P). We also investigate the particle density s ]
dependence of the Lyapunov spectrum to find a state in 0.2 r ]
which the two-point steps are most clearly distinguished
from the four-point steps. o Lo o L i aed
The outline of this paper is as follows. In Sec. Il, we 0 5 10 15 20
discuss in detail the quasi-one-dimensional system and the n

dependence of the Lyapunov spectrum on the number of hard

disks N and the density. In Sec. Ill, we consider the purely FIG. 2. The Lyapunov spectrum normalized by the maximum
periodic boundary condition caseP(P), and investigate Lyapunov exponent for a ten-hard-disk system with the periodic
wavelike structures of typdsTs] and[Tt] in the Lyapunov ~ boundary conditions in both directions. The Lyapunov exponents
vectors. In Sec. IV, we consider other boundary conditions?1s @1d\17 shown as the black circles form a two-point step asso-

in particular, hard-wall boundary conditions in theirection ciated_with_ the transverse Lyapunov modes shown in Fig. 3. The
(P,H), and in thex direction (H,P), and then purely hard- gray circle is the zero-Lyapunov exponént whose corresp_ondlng
wall boundaries K,H), and investigate the existence of Lyapunov vector componentigfi) show a constant behavidalso

modes of typegTs] and[Tt] in their Lyapunov vectors. ¢ Fig. 3

Results for the four different boundary conditions are com—eract with two nearest-neiahbor particles. and particles re-
pared. Finally, we give some conclusions and remarks ir% g P ' P

main in the same order. In the quasi-one-dimensional system,

Sec. V. the wupper bound p,ax On the particle densityp
=NmR%/(L,L,) [23] is given by pmpac=m/(243)
IIl. QUASI-ONE-DIMENSIONAL SYSTEMS AND DENSITY =0.908 . .. in thepurely periodic boundary conditions and
DEPENDENCE OF THE LYAPUNOV SPECTRUM Pmax=T4=0.788 ... in the purely hard-wall boundary

The stepwise structure of the Lyapunov spectra is purely £onditions. In such a system, we get a stepwise structure in
many-particle effect of the chaotic dynamics, and so far ith€ Lyapunov spectrum even in a system as smalNas
has been investigated in systems of 100 or more particles; 10, @s shown in Fig. 2, where the Lyapunov spectrum is
However, the numerical calculation of the Lyapunov spectrdiormalized by the maximum Lyapunov exponent=3.51.
for such large systems is very time consuming. Noting thisT® get this figure, we chose the parametersRasl, L,
point, in this section we discuss how we can investigate thes 2R(1+107°), L,=NL,(1+10"%), and the mas of the
stepwise structure of the Lyapunov spectrum for a systenRarticle and the total enerdy are given by 1 and\, respec-
whose number of particles is as small as possible. We alstvely, and we used purely periodic boundary conditions. The
investigate the particle density dependence of the LyapunoRarticle density of this system is given fpy=0.78% . . ..
spectrum in order to choose system parameters which givioting the pairing property of the Lyapunov spectrum for
the clearest differentiation of the stepwise structure. Hamiltonian systems, namely, the property that in Hamil-

We consider two-dimensional systems consistingNof tonian systems any positive Lyapunov exponent accompa-
hard disks in which the radius of the particleRsand the Nies a negative Lyapunov exponent with the same absolute
width (heighp of the system id., (L,). One way to get the Vvalue[1,24], we plotted the first half of the Lyapunov spec-
stepwise structure of the Lyapunov spectrum in a twoirumin Fig. 2.(The negative branch of the Lyapunov spectra
dimensional system consisting of a small number of particle¥Vill be omitted from all subsequent plotst is clear that the
is to choose a rectangular system rather than a square systéfPunov exponents ;s and A ;7 form a two-point step in
(of the sameN and are because the stepwise region in the this spectrum.

Lyapunov spectrum is wider in a more rectangular system [n order to calculate the Lyapunov spectra and the
[5]. Noting this characteristic, we concentrate on the moskyapunov vectors we use the algorithm due to Benettin
rectangmar case, name|y, the quasi_one_dimensiona| Systeﬂﬁ aI., which is characterized by intermittent rescaling and

defined by the conditions renormalization of Lyapunov vectof&5,26. In the applica-
tion of this algorithm to systems with hard-core particle in-
RNy3<L, and R<L,<4R. (1)  teractions, we calculate the matrix(t,), whose column

vectors give the Lyapunov vectodl"(t,) corresponding to

A schematic illustration of the quasi-one-dimensional systenthe local-time Lyapunov exponent,(t,) at timet=t, just
is shown in Fig. 1. This quasi-one-dimensional system is after thekth collision in the system. The dynamics of the
narrow rectangular system where each particle can only inmatrix A (t) is given byA (t 1) = MG M A(ty), in which
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-o-n=19 graph[Ts]). The corresponding Lyapunov exponeis;
~a- n=17 -+ n=16 and A4 are shown as the black-filled circles in Fig. 2 and
form a two-point step in the Lyapunov spectrum. The time

03 ' ' ' ' ] average of the quantitiesq(} andaqy; is the arithmetic av-
0.2 I_D"‘E!\ N ] erage of the quantity immediately after collision, taken over
T PN 100N collisions. The step consisting of two points in the
[ \ a1 Lyapunov spectrum of Fig. 2 accompanies wavelike struc-
A 0.1 F o ] tures in their Lyapunov vectors, which are called the trans-
s :ézl o O “p o—o o o dl o] verse spatial translational invariance Lyapunov modes. It
N 0 r O / ] should be emphasized that the Lyapunov modes in Fig. 3 are
\% E A A ] stationary over 1009 collisions and the time average sharp-
0.1 m" ] ens their wavelike structures. In this figure, we fitted the
i < ,,,@\ ,’ ] numerical data for the Lyapunov modes corresponding to the
0.2 g T 1 Lyapunov exponents; and g, to obtain the functiony
. ] = a,co8(2mx+By) [(ai7,B17)=(0.19913,0.9703) for the
03 e e triangle dots, and ¢, 816) = (0.240 25;:-0.596 77) for the
Y 02 04 06 08 1 square dofs It should be noted that the differenge;-
< gy> /L, —B16=0.9703- (—0.596 77 1.567 07 of the two values

of the phaseg,, is approximatelyr/2=1.57 ..., meaning
FIG. 3. The time-averaged/ components( 5q§r;)> of the that these two waves are orthogonal to each other. As the

Lyapunov vector of thgth particle as functions of the time average Benettin algorithm returns orthonormal Lyapunov vectors,
(9y;j)/ Ly of the normalizedk component of the position of thigh ay, in the fits are simply normalization constants. The graph
particle corresponding to the Lyapunov exponexis, \i;, and  of the Lyapunov vector Componeﬁqy}) as a function of the
N6, in the ten-hard-disk system with the periodic boundary Condi-position xj (J =12, ... N) becomes constant in one of the
tions in both directions. The circle, triangle, and square dots correzero-Lyapunov exponent,;q shown as the gray-filled circle
spond to the Lyapunov exponersgs, A17, andi g, respectively, in Fig. 2. In Fig. 3, we also fitted the numerical data corre-

which are shown as the gray-and black-filled circles in Fig. 2. Thesponding to the zero-Lyapunov exponant by the constant
dotted and dashed lines are the fitting lines for the sinusoidal f“ncfunction y=aj, With the fitting parameter valuewq

tions, and the solid line is the fit for the constant function. —0.015 114.

Although we can recognize the two-point step of the
N is the matrix required to normalize each column vector iNLyapunov spectrum in Fig. 2, it is important to note that
the operated matrixG M, A(t,), G is the Gram-Schmidt there is another type of step in the two-dimensional hard-disk
procedure ensuring the orthogonality of the columns in thesystem with a rectangular shape and periodic boundary con-
operated matrix, and1  specifies the tangent space dynam-ditions. It is well known that in larger systems the Lyapunov
ics including a free flight and a particle collisid8]. The  spectrum can have a stepwise structure consisting of both
local-time Lyapunov exponent,(t,) is calculated as the rate two-point and four-point step$,21]. If we want to investi-

of the exponential divergend@ontraction of the nth col-  gate the four-point steps, we have to consider a system con-
umn vector of the matrix\ (t,) to thenth column vector of sisting of more tha_n ten particles. _
the matrixg, M, A (t,). The Lyapunov exponent, is given Another interesting property of the Lyapunov vectors is

as a time-averaged local-time Lyapunov exponent after ghe angled, between their coordinate space d(ir§ecti§1qf")
g i H H n
long time calculation,=lim,_..x,(t,). Here we use the @nd their momentum space directiosp™, oI,

standard metric dos?= 3N (doglV2+dsgM2+dep2 = (8a™,6p™)T, whered, is defined by21]
+dsplM?) for the tangent space with thecomponentﬁptn)
y' o) X Sa™. spM
andy componentspy;’ of the Lyapunov vector of thgth 0.=cos™ L q p @)
particle corresponding to the local-time Lyapunov exponent : |sq™||sp™| /)

X,,. Other papers such as Ref8,27,2§ should be referred
to for more details of the Benettin algorithm and the tangenFigure 4 is the graph for the time averagg,) as a function
space dynamics of many-hard-disk systems. of exponent numben except for the ones corresponding to
It is very important to note that there are two ways thatthe zero-Lyapunov exponents. Here, again the time average
convince us of the structure of the Lyapunov spectrum; onf the angled, is the arithmetic average of the values imme-
is simply to find a step structure directly in the Lyapunov diately after collisions, for 1000 collisions.
spectrum, and another is to find a structure in the Lyapunov In Fig. 4, we also plotted the angl# at an instant time
vectors corresponding to a specific Lyapunov exponent. Figin order to know magnitudes of their fluctuations. This graph
ure 3 is the plot of the time averagéqy})) of they compo-  shows that the spatial padg™ and the momentum part
nent of thejth particle contribution to the Lyapunov vector sp(™ of the Lyapunov vector are pointed in almost the same
oI, corresponding to the Lyapunov exponentg, \17, and  direction forn=1,2, ... ,N—3 and in almost the opposite
\16 as functions of the time averagay;)/L, of the normal-  direction forn=2N+4,2N+5, ... ,ANN. This fact suggests
izedx component of théth particle(for j=1,2, ... N) (the  that if we get a structure in the vectdg™, then we may
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FIG. 4. Time-averaged angl@,) and instantaneous anglés
between the spatial pasig™ and the momentum pa#p™ of the
Lyapunov vector 8T,=(8q™,sp™)T corresponding to the
Lyapunov exponent,, in the ten-hard-disk system with the periodic
boundary conditions in both directions.

expect a similar structure in the vectép™, and vice versa.

It should also be noted that this gives a justification for some
approaches to the Lyapunov exponents in which the
Lyapunov exponents are calculated through the spatial coor-
dinate part only(or the momentum partof the Lyapunov
vector[18,29. For this reason, in this paper we concentrate
mainly on the structure of the spatial part of the Lyapunov
vectors, and omit discussion of the structure of the momen-
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tum part. Using the symplectic property of Hamiltonian dy- L TYTVYVEE9999 o
namics, if the Lyapunov vectosI',=(5q™,s5p™)T corre- 20 85 90 95 100
sponds to the Lyapunov exponeRt, then its conjugate n

Lyapunov vector 8T y_p.q=(8q“N"1F1) spdN-n+1nT
corresponding to the Lyapunov exponent_,.1= — A\, iS
ST an_ns1==(pM, —8q™T [1], so the graph of,, n
=1,2,...,N-3, and O,ny_pn+1, N=1,2,... ,N-3, is
i}’?r?]’:,tré‘;xhhsgqs(ﬁ’ﬁfﬁE?)t_r;ep("'fﬁﬁfﬂ):1/_2 52&5‘%52??“ —2R(1+10°%), L,=NL,(1+d) with d=10* (circles, d

. . . . =101 (triangles, d=1 (squares d=10 (diamond$, d=1C (in-
Another important point to obtain a clear stepwise Struc'verted triangles (a) Full scale.(b) The small positive Lyapunov

ture in the Lyapunov spectrum is the choice of the partICIeexponent region including the stepwise structure of the Lyapunov

density. Even if we restrict our consideration to quasi-one-spectra_ In(b), filled black symbols correspond to the Lyapunov

dimensional systems, the shape of the Lyapunov spectruglonents for which the time-averaged Lyapunov vector compo-
depends on the particle density, so we should choose a deggng 8q{7) as a function of ;) show wavelike structures. Filled

sity that gives a clearly visible stepwise structure in thegray symbols are for the Lyapunov vectors whose behavior is con-
Lyapunov spectrum with two-point steps differentiated fromgignt.

four-point steps. Figure(8) is the Lyapunov spectra normal-

ized by the maximum Lyapunov exponent for a quasi-one9.0579, respectively. As shown in Figsiaband 5b), for
dimensional system of 50 hard diskS<50) with periodic  smaller values of the quantity (that is, higher particle den-
boundary conditions in both directions. We also give an ensity), the gaps between the nearest steps of the Lyapunov
larged Fig. %b) for the small Lyapunov exponent region. spectrum become larger, although the stepwise region of the
Here the system parameters are givenRoy1, L,=2R(1 Lyapunov spectrum does not seem to depend on the quantity
+10°9), Ly=NL,(1+d), and we usedM=1 andE=N. d. This means that we can get a clear stepwise structure for
The five Lyapunov spectra correspond to the statesl of the Lyapunov spectrum in the smallcase(that is, at high
=10"* (circles, p=0.788...), d=10"1! (triangles, p  density.

=0.71®€...),d=1 (squaresp=0.39%6 .. .), d=10 (dia- In Fig. 5b), the Lyapunov exponents accompanying
monds, p=0.07 1®...), d=10° (inverted triangles,p  wavelike structuregconstant behavioysn the time-averaged
=0.00778...). Themaximum Lyapunov exponents; Lyapunov vector componenl{s&q&?), as functions of the
are given approximately by 3.62, 2.44, 0.934, 0.279, angosition(d,;), are shown as the blaggray) symbols. In the

FIG. 5. The density dependence of the Lyapunov spectrum nor-
malized by the maximum Lyapunov exponent for the quasi-one-
dimensional system withh=50 and periodic boundary conditions
in both directions. The five Lyapunov spectra correspond.jo
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FIG. 6. A schematic illustration of a quasi-one-dimensional sys- OOOOO
tem with periodic boundary conditions in both directions. The <
dashed lines indicate periodic boundary conditions along that e 0.1 f . OOOOO(%
boundary. < o8
0.6 “

smalld case, looking from the zero-Lyapunov exponents, the 0.05 | o. oooé
two-point step appears firsteed=10"4, 10 ! and 1 in Fig. 02 — o0
5(b)], whereas the four-point step appears first in the large 0 .5 0.5 110150is0
case(seed=10' andd=10?). Besides, at least in the small 0 B g
d case, the two-point steps and four-point steps do not appear 122 126 130 134 138 142 146 150
repeatedly(seed=10 % and 10'!). These facts mean that n
the sequence of steps in the Lyapunov spectrum depends on g, 7. The stepwise structure of the Lyapunov spectrum nor-
the quantityd, and therefore on the particle density. malized by the maximum Lyapunov exponent for a quasi-one-

The wavelike structures in the time-averaged Lyapuno\gimensional system with periodic boundary conditions in both di-
vector componentséq‘y?)) as functions of the positio(ny;)  rections. Inset: Full scale for the normalized Lyapunov spectrum.
(namely, the transverse spatial translational invarianc&he circles are filled blackgray) in the Lyapunov exponents cor-
Lyapunov modesappear mainly in the two-point steps of the responding to wavelike structurésonstant behaviorof the time-
Lyapunov spectra. Therefore, we can use these wavelikaveraged Lyapunov vector componeﬁm(yrj')> shown in Fig. 8.
structures to distinguish two-point steps from four-point
steps in the Lyapunov spectra. However, such a criteriofi? Which the dashed line along the boundary means periodic
sometimes seems to fail in steps of the Lyapunov spectrboundal’y conditions. This system satisfies spatial transla-
near a region where the spectra are changing smoothly. Adional invariance in both directions, and is regarded as a ref-
tually, the transverse Lyapunov modes may appear even i@rence model for the models considered in the following
some apparently four-point steps, if they are near such &ection.
smoothly changing Lyapunov spectrum region. On the other Figure 7 is the small positive Lyapunov exponent region
hand, in such a region of the Lyapunov spectra, the fluctua®f the Lyapunov spectrum normalized by the maximum
tions of Lyapunov vectors are rather large, and the wavelikdyapunov exponenk ;~ 1.33, including its stepwise region,
structure becomes vague. In Fighh we did not indicate for a quasi-one-dimensional system with periodic boundary
with black-filled symbols the Lyapunov exponents whoseconditions in both the directions. The global shape of the
corresponding Lyapunov vector compone{rﬂq(y’})> as func- Lyapunov spectrum is given in the inset in this figure. We
tions of the positior{(q,;) show vague wavelike structures. Used the values of the system parameters chosen at the end of

Based on the discussions in this section, in the followingthe preceding section. At least five steps consisting of three
two sections we consider only the case with system paramiWo-point steps and two four-point steps are clearly visible in
eters given byN=75, R=1, M=1, andE=N. The height this Lyapunov spectrum with the sequence of steps being
and the width of the system are given Hy=2R(1  2424-2.
+107°% andL,=1.5N L, (the densityp=0.52% ...) for The two-point steps of'the Lyapunov spectrum accom-
the purely periodic boundary case. In this case, as will bdany wavelike structures in their corresponding Lyapunov
shown in the following section, we can recognize at least two/€ctors. Figure 8 is the graph of the time-averaged Lyapunov
clear sequences of two-point steps then four-point steps, iector componentgsq(?) corresponding to the Lyapunov
the Lyapunov spectrum for this system. We always take th€XPONents\ 149, A147, A146, A141@Nd N 140, @S functions of
time-averaged quantitiessg{[”) and(ay;) of the quantities ~the time-averaged position componeg;) normalized by
sa{ anda,; , respectively, as the arithmetic average of theirthe lengthL, (the mode[Ts]). The Lyapunov exponents
values taken at times immediately after collisions, overN.00 US€d for this figure are shown as the black or gray circles
collisions. We calculated more tharnx20® collisions (16 N Fig. 7. In this figure, we also give fits of the numerical
collisions in some of the modelsin order to get the data to sinusoidal equations or a constant functwhere

Lyapunov spectra and the Lyapunov vectors in the model@PPropriate. The fitting equations arg= a,cos(2mx+Sy)
presented in th|S paper. f0r n= 147,146 [(a147,,8147) :(_016 132,_45575,
(146,814 = (—0.161 25,0.14928)], andy= a,COS(4mrx
+ﬁn) fOI‘ n:141,140 [(a141,ﬂ141):(_0.157 75,
—0.305 81), @140,ﬂ140):(0157 82,12666)] It |S impor-
tant to note the relationigv, 41 ~|a14d, | @141 ~|@14d: Biss

In this section, we consider the Lyapunov spectrum for— B,47~3m/2, and B140— B147~ 7/2, meaning that the two
the quasi-one-dimensional system with periodic boundaryvavelike structures in the same two-point step are orthogo-
conditions in both the directionsP(P). A schematic illus- nal to each other. In Fig. 8, we also draw a graph of the
tration of this system for latter comparisons is given in Fig. 6averaged Lyapunov vector componeﬁﬁqy})) as a function

IIl. QUASI-ONE-DIMENSIONAL SYSTEMS WITH
PERIODIC BOUNDARY CONDITIONS
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FIG. 8. The time-averaged Lyapunov vector components & *él\,\\\\t\(\ﬂ»,,. \W\!(\\\%{'r‘!“@‘(\i‘
(5q§,rj‘)> as functions of the time averaga,;)/L of the normalized e 0'0 NN ‘l.,\éﬁ’ﬁ\\\“\‘\\\‘; (4]‘\;\\&\5‘\3 A
x component of thgth particle for the Lyapunov exponenks g, 5;\ o1 I 4] m“\'»‘!\‘\‘\%\f’;\%‘*\\‘ ‘\i}y‘pﬁ
N147, N1ag N1a1, @nd Xy, for the quasi-one-dimensional system 0%7 :0'2 TN W g‘@;\},g’ll\'\‘g‘ 5&&.,\‘\1
with the periodic boundary conditions in both directions. The cor-  , 7 [’ IO M‘
responding Lyapunov exponents are shown as the gray- and black- ’ ‘
filled circles in Fig. 7. The numerical data are fitted by a constant
function and sinusoidal functions.
of the normalized positiofgy;)/L corresponding to the sec- g 548000 0 2 0%
ond zero-Lyapunov exponent; 49, Which is approximately _ N _
constant, and is fitted by a constant function a4 with the FIG. 9. Local time-averaged quantitiésq(/p, ;) as functions

fitting parameter valuer;,o=0.018 901. These results sug- ©f the normalized positioday;); /L and the collision numben,
gest the following conjecture for the approximate form of thecorresponding tda) the Lyapunov exponenty,, in the first four-
Lyapunov vector component&q{,’j‘(k)] and 5q£/r}(k)fl] corre- po!nt step _anc(b) the Lyapl_Jr}ov exponeml39 in the second four-
sponding to the Lyapunov exponentgy andX yy_» in the point step in the same collision number interi/a43 000,548 10D

samekth two-point step counting from the zero-Lvapunov The system is the quasi-one-dimensional system with the periodic
P p 9 yap boundary conditions in both directions, and the corresponding

exponents as Lyapunov exponents are indicated by arrows in Fig. 7. In the con-
tour plots on the bottoms of these three-dimensional plots, dotted
{5qyj?(k)1 '5q£/'}(k)—1]} lines, solid lines, and dashed lines correspond to the values

(59{P/py;)=0.08, 0, and-0.08, respectively.
[ 2wk
1aksm(|—_qxj+:8k , cal meaning of the four-point steps is different from that of
X two-point steps, and we should consider a different quantity
(3)  to characterize the Lyapunov vectors of the four-point steps.

Now, as one of the important results of this paper, we show

i=1,2,... N with constantsa, and B.. (Note that we that the wavelike structures in the quantitiég(}’/p,; as

count the sequence of steps of the Lyapunov spectra begiftnctions ofq,; and the collision number appear in the four-
ning from the zero-Lyapunov exponents, so for example, th@0int steps of the Lyapunov spectrum. As a motivation for
first two-point step consists of exponeits,; and\,45 and  the introduction of the quantityq?/p,;, we note that a
the second two-point step consists of exponents and  small perturbation of the spatial coordinates of the particles
N140in Fig. 7) Note that the constant, in Eq. (3) is deter-  in the direction of the orbit, namelyigep, leads to a zero-
mined by the normalization condition for the Lyapunov vec-Lyapunov exponent, so that the quantitiéqg,?)/pyj v
tor in Benettin’s algorithm. =1,2,... N, should give a constant value corresponding to
It should be emphasized that the wavelike structures irthis zero-Lyapunov exponent. This is the common feature as
Figs. 3 and 8 correspond to the two-point steps of thehe quantity5q§?), which shows a constant behavior corre-
Lyapunov spectrum. We cannot recognize such a clear wav&ponding to one of the zero-Lyapunov exponents due to spa-
like structure in the graph of the Lyapunov vector componential translational invariance, and whose wavelike structure
<6q§,’})> as a function of the positio{qy;) for the four-point ~we have already discussed.
steps in the Lyapunov spectrum. This suggests that the physi- Before showing graphs oa‘>‘q§,“})/pyj, we discuss some

27k
~\ a,Co L—ij+,3k
X
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FIG. 10. Contour plots of the local-time averaged quanti(iét:}(y'})/pyj>t as functions of the normalized positidn,;); /L, and the
collision numbem, corresponding to the first four-point step consisting of the Lyapunov eXpoReRtS\ 144, N143, and\ 145, in the same
collision number interval[ 538 500,548 10D Here dotted lines, solid lines, and dashed lines correspond to the v&&q@}%/pyj)t
=0.08, 0, and—0.08, respectively. The system is the quasi-one-dimensional system with periodic boundary conditions in both directions,

and the corresponding Lyapunov exponents are those indicated by the brace under open circles in Fig. 7.

difficulties in the investigation of wavelike structure in these|p,;| of the momentum is less than 5040%) of the aver-
quantities. It is much harder to observe the wavelike strucaged momentum amplitude®ME/N, then we exclude the
ture in these quantities corresponding to the four-point stepguantity 5q{/}'/p, ; at that time from samples to take this local
compared to the quantitieqy} corresponding to the twWo- time average, in the models of this section and Sec. I¥hA
point steps, for at least two reasons. First, the fluctuations ifhe models of the Secs. IVB and IV)C[Therefore, the
the wavelike structure of the quantitiem§'}’/ Pyj is much  sample number for taking the arithmetic averages can be less
larger than those in the wavelike structure of the quantitiegpan 4\ (8N) in the models of this section and Sec. I\iA
59, partly because the fluctuation is magnified WD the models of Secs. IV B and IV)d Even with this local
appearing in the denominator has a small absolute valugime average, we can still get more than ten locally time-
Second, the wavelike structure of the quantity{}’/p,; 0s-  averaged data points per period for the modes with the slow-
cillates periodically in time, whereas the wavelike structureest time-oscillating movement of the quantii}q(y‘})/pyj cor-

of the quantitiessq{} in Fig. 8 is stationary at least over responding to a step of the Lyapunov spectra, for example,
more than 10N collisions. This fact gives an upper bound corresponding to the first four-point step of the model in this
on the time periodor the collision number intervalover  section. In this paper, we consider the graph of the quantity
which we can take the time average(i!ﬂ,'})/pyj in order to (5q§,r})/pyj)t as a function ofq,;); andn;, wheren, is the
suppress the fluctuations and still get their clear wavelikdirst collision number contained in the interval over which
structures. In this paper, we express the local time averageke time average is takef,-);.

of the quantities&q§”)/pyj and q,; as (5q§,r})/pyj>t and Figures 9a) and 9b) are the graphs of the quantity
(dxj)t, respectively, with the suffix to remind us that they (5q§,r})/pyj)t as functions of the normalized position
can change in time. (axj)t/Lx and the collision numben,, corresponding to the

In this and the following, sections, we will give the graphs Lyapunov exponents ;45 and X159, respectively, indicated
of 5q§'})/pyj as functions ofj,; and the collision number by by arrows in Fig. 7. These two graphs correspond to the
taking their local time averages, so here we summarize howyapunov exponents in different four-point steps and the
we calculate the data for those graphs from a technical poirdame collision number interval is usgdh43 000,548 10D
of view. First we take the arithmetic time average In the graph corresponding to the Lyapunov exponepnt
(89{P/py;): and(ay;), of the quantitiessq/p,; anda,;,  (M13), we can recognize a spatial wavelike structure of
respectively, using their values just after particle collisionswavelength 1 (1/2) oscillating in time. The time-oscillating
over 4N collisions (8N collisions, but if the absolute value period corresponding to the Lyapunov exponepd is about
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+ <84/ Py> >0 spatial waves in graphs (€ and 1@d) coincide with each
= R 0 other approximately, and the phase difference between the
- <8/ Py> <0 X R ! . R

spatial waves in graphs (@ and 1@c) is approximately

e B | K m/2. Besides, the node of the time oscillation in graph@)0
o B B R e I e and 1Qc) as well as the nodes of the time oscillation in
A graphs 1(b) and 1@d) coincide with each other approxi-
+=14]=|+ -1+ =-]+]|3 \f mately, and the phase difference between time oscillations in
graphs 108) and 1Qb) is about#/2. These points are sum-
-1+ - + ) - + - + -1 marized in Fig. 11, which is a schematic illustration of the
Phase [ P3 ] Phase [ P4] p phase relations amongst the time-oscillating wavelike struc-
tures for the quantity 5g{"/py;);. Here, the phasesP1],
o b d el el B -|1+|-|t N [P2], [P3], and[P4] correspond to those in Figs. (),
S \f 10(b), 10(c), and 1@d), respectively. These observations sug-
+| ==+ =] - gest that the Lyapunov vector componentgli®l,
& sqln®=1  5qli9721and sqli9 7% corresponding to the
e e+ To Tt A0 T n+To By 20 Lyapunov exponents for thkth four-point step can be ex-

FIG. 11. A schematic illustration of the phase relations among:spressed approximately as
the four time-oscillating wavelike structures for the quantities
(89{P/py;); as functions of the positiokidy;); and the collision

numbem,, for the first four-point step. The spatial wavelength and {5q£,r}(k)] ,5qyj‘(k)71] ,5qyj‘(k)72] ,5q£,'}(k)73]}

the period of the time oscillations are given by and7,, respec-

tively. In each case, the collision number interval is the same. Thick = 2wk ~ 2wk ~
gray lines are nodal lines, the region indicated by a plus sighié ~ | *kPyc0 |__Xq><j+'8k co Ton‘+ Yk

the region when{&qg,rj‘)/pyj}t is positive, and the region indicated
by a minus sign ) is the region Wher(ééq(y’})/pyj)t is negative. ~ 27k +7
The phases iP3] and[ P4] differ from the phases ifiP1] and @KPy;CO L, Axj T B

[P2] by a simple shift ofr/2 in the vertical(spatia) direction. The

’

[ 2wk ~
sin Tont+ Yk

phases irf P1] and[ P3] differ from the phases iiP2] and[ P4] ~ 27k ~ 27k~

by a simple shift of#/2 in horizontal(time) direction. aPy;jsin L, Oxj+ Bk |CO Ty Net ¥

half of the period of the oscillation corresponding Ng,s. ~ 2k 5 2wk

These graphs, especially Fig(b® are the most difficult akpy,-sin(l_—qxj+ﬁk sin(?nﬁr Ylt, @
X 0

graphs in which to recognize the wavelike structures in their
three-dimensional plots, and in order to recognize the struc-
tures the contour plots given in the bottoms of these two ) ~ ~ ~
three-dimensional plots may be helpful. In these contoui =1.2,... N, with constantsy, By, andy. It should be
plots we show mountain regions wherg 5q9})/pyj>t emphasized that the level of agreement between(4cand
—0.08) by dotted contour lines, and valley regions wherdhe numerical results for the four-point steps is worse than

(<5Q§?)/Pyj>t= —0.08) by dashed contour lines. The solid the agreement between E®) and the numerical results for

contour lines correspond @5q\/py;)=0. the two-point steps.

Now we consider the relationship between the quantities
(5q§,'})/pyj>t in the Lyapunov modes for the first four-point
step. Figure 10 contains the contour plots of the quantity
(59{P/py;) as a function of the normalized position
(dxj)t/Lx and the collision number; for the first four-point In this section, we consider quasi-one-dimensional sys-
step consisting of the Lyapunov exponentss, 144, A 143, tems with varied boundary conditions, replacing periodic by
and M4, over the same collision number interval hard-wall boundary conditions in one or both directions.
[538500,548 10D Here, dotted lines, solid lines, and Given that there are two directions in which we can intro-
dashed lines correspond t(()5q§r})/pyj)t=0.08, 0, and duce the hard-wall boundary conditions, we consider three
—0.08, respectively. It is clear that in these four graphs theicases: P,H), the case of periodic boundary conditions in
spatial wavelength&etermined byL,) and time-oscillating the x direction and hard-wall boundary conditions in the
periods (determined by7;) are almost the samédIn this  direction; H,P), the case of hard-wall boundary conditions
paper, we use the quantifi as the period in units of the in thex direction and periodic boundary conditions in the
particle-particle collision number, but we can convert it intodirection; and H,H), the case of hard-wall boundary condi-
the real time interval by multiplying by the mean free time, tions in both the directions. Adopting the hard-wall boundary
which is about 0.0243 for this systemOn the other hand, condition in a particular direction breaks the spatial transla-
we can recognize that the position of the nodes of the spatidional invariance in that direction, so it allows us to discuss
waves in graphs 18) and 1@b) as well as the nodes of the the role of momentum conservation in the stepwise structure

IV. QUASI-ONE-DIMENSIONAL SYSTEMS WITH
A HARD-WALL BOUNDARY CONDITION
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FIG. 12. A schematic illustration of a quasi-one-dimensional 0.15 [ OoO )
system with periodic boundary conditions in tRedirection and < I |
hard-wall boundary conditions in thg direction, (P,H). The = 01 L Coop 1
dashed line on the boundary represents periodic boundary condi- < i 08 il ]
tions, and the solid line on the boundary represents hard-wall L 06 (00e) 1
boundary conditions. [ o4 ]

Y 005 . ¥
of the Lyapunov spectrum by comparing models having [0 b — ]
hard-wall boundary conditions with models having periodic LT P S S TN |
boundary conditions. We will get different stepwise struc- 122 126 130 134 138 142 146 150
tures for the Lyapunov spectra in the above three cases com- n

pared with the previous case, and the investigation of the

corresponding Lyapunov vectors allows us to relate and to FIG. 13. Stepwise structure of the Lyapunov spectrum normal-

categorize them. ized by the maximum Lyapunov exponent for the quasi-one-
In the systems with a hard-wall boundary condition, wedimensional system with periodic boundary conditions inxtué-

should carefully choose the width, and the heighLy of the rection and hard-wall boundary conditions in théirection. Inset:

systems for meaningful comparisons between the results ¢full scale of the normalized Lyapunov spectrum.

different systems. It should be noted that in systems with

pure periodic boundary conditions, the centers of particles Figure 13 is the Lyapunov spectrum normalized by the
can reach to the periodic boundaries, while in hard-wallyaximum Lyapunov exponent; ~1.30 for this system. In
boundary conditions the centers of particles can only reackg figure, we showed a small positive region of the
within a distanceR (the particle radius of the hard-wall | yapunov spectrum including its stepwise structures, while
boundaries. In this sense, the effective region for particles t¢he fyll scale of the positive branch of the Lyapunov spec-
move in the system with hard-wall boundary conditions iStrym is shown in the inset. In this system theomponent of
smaller than that in the corresponding system with periodighe total momentum is not conserved because of the hard-
boundary conditions, if we choose the same lengthand  \ya)| boundary conditions in thg direction, so there are only
Ly. In this section, the lengths, andL, of the systems with  foyr zero-Lyapunov exponents in this system. This figure
a hard-\_/vall boundar_y condition are chosen so that the effecshows clearly that the steps of the Lyapunov spectrum con-
tive region for a particle to move is the same as in the purely;st of four-point steps only, and there is no two-point step in
periodic boyndary case considered in the preceding sectiofe Lyapunov spectrum which appears in the model dis-
and are given by I{,,L,)=(R(1+10 %) +2R,15N(L,  cussed in the preceding section. Besides, we cannot recog-
—2R)) in the case R,H), (Ly,L)=@R(1 nize a wavelike structure in the graph of Lyapunov vector
+1076)v1-5N_'-g/+2R) in the case i,P), and Ly,L)  componentgsq()) as a function of the positiotq,;) (the
=(2R(1+107°)+2R,1.5N(L,~2R)+2R) in the case graph[Ts]) in this model. A comparison of this fact with
(H,H). These choices of the lengths andL, also lead to regyits in the previous model suggests that the two-point step
almost the same mean free time for particle-particle colli-of the Lyapunov spectrum in the preceding section should be
sions in the four different boundary condition cases. In thestrongly connected to the conservation of yreomponent of
cases of P,H) and H,H) with this choice of the system e total momentum.
width L, there is, in principle, space for the particle posi- e consider a relation between the four-point steps in the
tions to interchange in thedirection[that is, strictly speak-  model of this section and in the model of the preceding sec-
ing these cases do not satisfy the second condition of Bl. o by investigating the graph of the quant§g"/p,:), as
but the space is extremely narrdthat is, Rx 10" %) sothat 4 function of the normalized positiof. . vl St
o ) ) \ a positiofuy;); /L and the col
it is almost |mp053|ple for p_artmlg positions to actually be|ision numbern, (the graph[Tt]). (Note that in this paper
exchanged. Indeed, in our simulations no particle exchanggge ysen, as the collision, number of particle-particle colli-
are observed. sions which does not include particle-wall collisions, in order
to make the collision number, of the four different bound-
ary condition cases comparabl&igure 14 presents graphs
corresponding to the Lyapunov exponent,g in the first
The first case is the quasi-one-dimensional system witliour-point steg Fig. 14@)] and the Lyapunov exponent, 44
periodic boundary conditions in the direction and with in the second four-point steff-ig. 14(b)], which are indi-
hard-wall boundary conditions in thedirection[the bound- cated by arrows in Fig. 13, using the same collision number
ary case P,H)]. A schematic illustration of this system is interval[390 600,396 00D The wavelike structures of these
given in Fig. 12 in which periodic boundary conditions and graphs have a wavelength fér theith four-point steps. The
hard-wall boundary conditions are represented as dasheaiine-oscillating period corresponding to the Lyapunov expo-
lines and bold solid lines, respectively. nent \ 14g is almost the same as the periag of the first

A. The case of periodic boundary conditions in thex direction
and hard-wall boundary conditions in the y direction
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<54/ P>y { L S der circles in Fig. 13. In this case, the contour lines of
UL 08 (5a7/py;)=0 seem to be slanting, but if we pay attention
(@)n=1438 to the mountain regions and the valley regions in these

graphs then we can realize that the structure of these four

AT

A 02 g _ - .

= 015 Mg ~~,—~*1;;‘§‘ A S NSRS YA graphs are similar to the contour plots of the four graphs in

& 0%; A %&?ﬁ\\a\&ﬁ;\i\\s\s\gﬁ\\!\&\f@gﬂ\ Fig. 10 for the previous model. Therefore, the phase relations

g 0 4‘%&(&\\\\\ @\ﬂ&\l\\\f\\\\\‘%\\{‘\\\\\\\\d RN among the time-oscillating wavelike structures of the quan-

& 90 \\\Q:\\{\\\\\\\Wﬂ.ﬁ‘-ﬁ = \\\;?:\\\‘\‘\' tity (59{7/py;); can be summarized in the schematic illus-

“\j WA = tration given in Fig. 11 such as in the previous model. This
suggests an approximate expression for the Lyapunov vector

1 components given by Ed4), for Lyapunov vector compo-

nents&qy}) corresponding to the Lyapunov exponents of the
four-point steps in this model.

B. The case of hard-wall boundary conditions in thex
direction and periodic boundary conditions in the y direction

As the next system, we consider a quasi-one-dimensional
system with hard-wall boundary conditions in thdirection
and periodic boundary conditions in the direction [the
boundary caseH,P)]. A schematic illustration of such a
system is given in Fig. 16 with solid lines for the hard-wall
boundary conditions and dashed lines for the periodic bound-
ary conditions.

In this system, th& component of the total momentum is
not conserved, so the total number of the zero-Lyapunov
exponents is 4. Figure 17 is a small positive region of the
Lyapunov spectrum normalized by the maximum Lyapunov
exponent\ 1~ 1.30, including its stepwise structure, while its

< sqyj(144) / p b/l >t

n

FIG. 14. Local time-averaged quantitiésqj?/py;); as func-  whole positive part of the Lyapunov spectrum is given in the
tions of the normalized pOSItlo(‘le)t/LX and the collision number inset. The Stepwise structure of the Lyapunov spectrum is
n, corresponding to the Lyapunov exponentss and Ay, in the  clearly different from the model of Sec. IV A, and consists of
same collision number intervgB90 600,396 00D The system is  yyo-point steps interrupted by isolated single-Lyapunov ex-
the quasi-one-dimensional syster, 1) with periodic boundary ,,nants(We call the isolated single-Lyapunov exponents in-

conditions in thex direction and hard-wall boundary conditions in_ terrupting the two-point steps “one-point steps” from now

they direction, anq theﬁ corresponding Lyapunov exponents are "on, partly because they are connected to the two-point steps
dicated by arrows in Fig. 13. Contour plots on the bottoms of these . - .

) . . . o in the model of Sec. Ill as will be shown in this sectipAs
three-dimensional plots are given by dotted lines, solid lines, and

dashed lines corresponding to the valyég{}/p,;),=0.08, 0, and discussed in Sec. ll, the Lyapunov spectrum for the model
~0.08, respectively. with pgnodlc boundary co_ndltlons in bc_Jth directions has
two-point steps and four-point steps, and it is remarkable that
four-point steps of the previous model, and is approximatelyadopting hard-wall boundary conditions in thedirection
twice as long as the time-oscillating period in the Lyapunovand destroying the total momentum conservation in this di-
exponent\ 144 Of this model. These features are commonrection halve the step widths of both kinds of steps.
with the four-point steps in the models of the preceding sec- Figure 18 shows the graphs of the time-averaged
tion, suggesting that the four-point steps of the Lyapunowyapunov vector componen¢§q§?)> as functions of the nor-
spectrum in this model correspond to the four-point steps immalized position(qy;)/L (the mod¢ Ts]), corresponding to
the model of the preceding section. We can also show thahe one-point steps. We can clearly recognize wavelike struc-
the quantities<5q§,'})/pyj>t corresponding to the zero- tures in these graphs, and in this sense the one-point steps in
Lyapunov exponents ;59 and \ 149 are approximately con- this model should be strongly related to the two-point steps
stants as functions dfy;); andn,. in the model of Sec. Ill. The Lyapunov exponents accompa-
Now we proceed to investigate the graph of the quantitiesying wavelike structure of this kind of graphs are shown in
<5q§,’})/pyj>t corresponding to the Lyapunov exponents in theFig. 17 as black-filled circle dots, meaning that they are the
same four-point steps of the Lyapunov spectrum. Figure 1®ne-point steps. In Fig. 17, we also filled the circle symbols
shows the contour plots of these quantities as functions odith gray for one of the zero-Lyapunov exponents in which
the normalized positioriay;);/L and the collision number the graph of the Lyapunov vector componeﬁm§,'})) as a
n;, corresponding to the first four-point step consisting of thefunction of the position(qy;) is constant approximately.
Lyapunov exponents g, N147, N146, @aNdA 145, in the same  However, it is important to note that the wavelength of the
collision number interval[385800,396 00D The corre- wave corresponding to thi¢h one-point step in this model is

sponding Lyapunov exponents are indicated by the brace ur2/i, not 11 as in the model of Sec. Ill. We fitted the graphs
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(@n= }45

< gy >/ Ly

< gy >/ L«

b~ = =]

387500 390000 392500 395000 387500 390000 392500 395000
17 g

FIG. 15. Contour plots of the time-averaged quanti(iQe}g,’P/p),J-)t as functions of the normalized positign,;); /L, and the collision
numbern, corresponding to the first four-point step consisting of the Lyapunov expoRets\ 147, N146, aNdA 45, in the same collision
number interval 385 800,396 00D The system is the quasi-one-dimensional syst@yH( with periodic boundary conditions in the
direction and hard-wall boundary conditions in thdirection, and the corresponding Lyapunov exponents are indicated by the brace under
circles in Fig. 13. Here dotted lines, solid lines, and dashed lines correspond to the(vﬁ@i#pyj)tzo.o& 0, and-0.08, respectively.

corresponding to the Lyapunov exponentSg, \i4g, \14s, these two-point steps of the Lyapunov spectrum, the graphs
and \Nqup by the functions y=ajsg,a14€0sGx  of the quantity<5q§,rj‘)/pyj>t as functions of the normalized

+ B1ag) » @145€0S (27X + Bras) , 14,0 (37X + B1a2) , respec-  position (gyj);/Lx and the collision numben; (the mode
tively, with &, and g, as fitting parameters. Here, the values[Tt]) show spatial wavelike structures oscillating in time. It
of the fitting parameters were found to bg,—0.11547, is shown in Fig. 19 for those graphs corresponding to
(a143,,8148)=(0.162 13,_0008 977 8), @145,3145)

=(-0.16202;-0.010 07), and &142, 8142 T T
=(—0.15945,0.008 914 8). The graphs are very nicely fitted Ooo
by a constant or the sinusoidal functions, and lead to the 0.15 | oO
form ’ o)
%o
K < Oy
5q[y?‘k”~aécos(—qxj+ﬁa , ©) S o1 f o
LX [=] 1 (x)
= 08 ° |
j=12,...N, of the Lyapunov vector componeay.*! 06 0 I
corresponding to the Lyapunov exponentg, in the kth 0.05 ., o
one-point step with constants, and 3y . 02 °
Now we investigate the remaining steps, namely, the two- 0 K 536750 70 50 110130150 Lo

point steps of the Lyapunov spectrum. Corresponding to O ————

122 126 130 134 138 142 146 150
n

I ’ ' . Ss ‘ . ] FIG. 17. Stepwise structure of the Lyapunov spectrum normal-

""""""""""""""""""" ized by the maximum Lyapunov exponent for the quasi-one-
dimensional system with hard-wall boundary conditions in xhe
FIG. 16. A schematic illustration of a quasi-one-dimensionaldirection and periodic boundary conditions in thdirection. Inset:
system {,P) with hard-wall boundary conditions in thedirection Full scale of the normalized Lyapunov spectrum. The circle dots
and periodic boundary conditions in thadirection. The solid lines filled by black (gray) are the Lyapunov exponents accompanying
for the boundary represent hard-wall boundary conditions, andvavelike structure(a constant behaviprof the Lyapunov vector

dashed lines represent periodic boundary conditions. components 5q§,’})) partly shown in Fig. 18.
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FIG. 18. Time-averaged Lyapunov vector componeras) <O R ll‘ﬁ:‘\%‘(i\%\@\\\\\\t\{“ﬁ\&\\\‘ '\
corresponding to the Lyapunov exponemnts,, \isg, A5, and %\\ 0-08 \:\V‘\%‘,bg\\t\“"\&\;\}/gs\\‘\i\\\‘\\\\‘
N142, as functions of the time-averaged particle posit{og;)/Ly S, 0.0 |y W &\&}\\\]“(\Q{N\l‘\gg\
normalized by the system length . The system is the quasi-one- S NITTTR ‘i&"’lf’x\; NS
dimensional systemH,P) with hard-wall boundary conditions in Voo ST
the x direction and periodic boundary conditions in thdirection, st 5
and the corresponding Lyapunov exponents are shown as the black- 200000 <2 1
and gray-filled circles in Fig. 17. The numerical data are fitted by 2240020260064-"-' ;
either a constant or sinusoidal function. n 228000 Sl S5 * |
g 232000 0 £ 087
Lyapunov exponenténdicated by arrows in Fig. 27n dif- (¢)n=141 ]
ferent two-point steps, in the same collision number interval 095 X :1\“ A
[222 000,232 20D The spatial wavelength of the waves cor- A 53 Jﬁ?\‘l&i‘\“\\ A
. . . . . . = [ R A O
responding to théth two-point step is 2/ which is twice as § B ‘\A N ;/A’\%\}\\\\ﬁ\\\.\\\\l‘\‘_?%!{\g y
long as the wavelength of waves of the four-point steps in g~ 005 iﬁ\\};\#&g \\\3\\\\\\\\0‘4\&\\\\5\;\ \5:
the models in Sec. lll and the preceding section. The period 5;5 005 4 \Qﬂw, A‘}}%}\\;\%\‘v\"
of time oscillation of the wave corresponding to fltle two- D) -obig ) AR , 4};3*""’ A
point step of the Lyapunov spectrum is approximately given V035 [ o) s
by 7 (/i with a constant ;. The graph corresponding to one J
of the zero-Lyapunov exponents, namelysy, is almost 22200292000
constant. 226000 == 3 D4 s
It is important to note the relation between the time- ng 230000 <o) N

oscillating period7, of the preceding two models and the
time-oscillating period7 ; of the model in this section. FIG. 19. Local time-averaged quantitié§q§,'})/pyj>t as func-

Noting  that m, Figs. ), .14(a), aﬂd _19a) we plotted_ tions of the normalized positiofuy;); /Ly and the collision number
about one period of t_h_e time oscnl_auon of t_ht_a wa_wellke n, corresponding to the Lyapunov exponeNtsy, X 14z, and 41,
structures of the quantltle(55q§,r})/pyj)t in the collision time i the same collision number intervig222 000,232 20p The sys-
intervals  [543000,54810) [390600,39600) and tem is the quasi-one-dimensional systei,P) with hard-wall
[222 000,232 20D respectively, we can get an approximate boundary conditions in the direction and periodic boundary con-
relation7 o~ 27,. ditions in they direction, and the corresponding Lyapunov expo-
The next problem is to investigate the graphs of the quanrents are indicated by arrows in Fig. 17. Contour plots on the bot-
tities(&qg,?)/pyj)t as a function of the pOSitiO('qxj>t and the toms of these three-dimensional plots are given by dotted lines,
collision numbern, in the same two-point step of the solid lines, and dashed lines corre_sponding to the values
Lyapunov spectrum. Figure 20 shows the contour plots of 9% /Py;)=0.08, 0, and-0.08, respectively.
such graphs for the first two-point step consisting of the
Lyapunov exponents,,; and\ 146, Which is indicated by a phases of the time oscillations of the amplitudes of the waves
brace under circles in Fig. 17, in the same collision numbegre shifted by about/2 with each other. The phase relations
interval [ 212 400,232 20D It should be noted that the posi- of graphs 20s) and 2@b) are visualized in the schematic
tions of the nodes of two spatial waves belonging to the sam@lustration given in Fig. 21 of the time-oscillating wavelike
two-point step almost coincide with each other. However, thestructures of the quantitie(ﬁqg})/ Py;j): corresponding to the
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rI X X]
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FIG. 22. A schematic illustration of a quasi-one-dimensional
system H,H) with hard-wall boundary conditions in both direc-

tions. The solid line on the boundary represents hard-wall boundary
conditions.

< gy >/ Lx

first two-point step in the same collision number interval.
Here the phasgdsP1’] and[P2’] correspond to Figs. 28)

and 2@b), respectively. A similar investigation of the
Lyapunov vectors shows that the time-oscillating wavelike
structures for the second two-point steps are like those of
phase$P1] and[ P2] of Fig. 11 except that the peridf} in

Fig. 11 should be replaced with the oscillating peribg of

this model. These results suggest that the two-point steps in
this model correspond to the four-point steps in the models
of Secs. IV A and lll, except for differences in the values of
their wavelengths and time-oscillating periods. After all we
get a conjecture that the Lyapunov vector components
RN 5q{,'}_(k)_” corresponding to the Lyapunov expo-
nents constructing thkth two-point step are approximately

< gy >/ Ly

0 expressed as
00 P
n(k n(k) -
ng {5q£/?( )1 ,5q£/f]?( ) l]}
FIG. 20. Contour plots of the local time-averaged quantities - wk ~ k _
(89{P/py;); as functions of the normalized positigny;), /Ly and ~1 ayPy;CO L_quj+'[3‘,‘ co ?Onﬁ— Yol

the collision numbem, corresponding to the first two-point step
consisting of the Lyapunov exponents,; and A 146, in the same _ wk _
collision number interval 212 400,232 20D The system is the aﬁpyjcos(l_—qxﬁﬁ{(
quasi-one-dimensional systemd (P) with hard-wall boundary con- X

ditions in thex direction and periodic boundary conditions in the ) ~, ~, ~, _
direction, and the corresponding Lyapunov exponents are indicatet™ 1:2» - - - N with constantsa, By, andy,, noting the
by the brace under circles in Fig. 17. Here dotted lines, solid linestime-oscillating periodZy~27,.

and dashed lines correspond to the valgeg(?/p,;)=0.08, 0,

and —0.08, respectively. C. The case of hard-wall boundary conditions
in both directions

: (6)

[ ak ~,
sin ?Ont+ Yk

The last model is the case of hard-wall boundary condi-

{ : Zz(f,’yjfiﬁiyﬁ :Z tions in both direction$the boundary caseH,H)]. A sche-

= <8/Py> <0 matic illustration of this system is given in Fig. 22 in which

Phase [ P1'] Phase [ P2'] the solid line of the boundary means to take hard-wall
~ boundary conditions.

-1+l =-14]- =] - : A small positive region of the Lyapunov spectrum nor-
Q ’; malized by the maximum Lyapunov exponeni~1.29 is
Y given in Fig. 23. The graph for the full scale of the positive

tl=fl=]+ S EAERE: branch of the normalized Lyapunov spectrum is also given in
s the inset of this figure. In this system the total momentum

1y ne+To' 1+ 2To' 1g ng+To' ng + 210’ is not conserved anymore, and the total number of zero-

Lyapunov exponents is 2. The stepwise structure of the

NS . e () ‘?_yapunov spec';rum consists_ of two-point steps only. In this
time .OSC'"at'ng wavgl_lke structures of the_ q.uam't{myl Ipyj) as model, a wavelike structure in the Lyapunov vector compo-
functions of the positioffqy;); and the collision numben,, corre-

(n) i iti :
sponding to the first two-point step in the same collision numbePent<_5in ) as a function of the posmo(}qx]) (the mode
interval. Thick gray lines mean node lines, the region indicated by 4 1 S}) IS not observed.

plus sign () is the region where the quantitya(’/p,;); is posi- Figure 24 shows the graphs of th_e_quantméely}’/py;)t
tive, and the region indicated by a minus sign)(is the region ~as functions of the normalized positidu,;);/L, and the
n

where the quantitj5q§j)/pyj>t is negative. The phase pP1']is  collision numbern, (the mode[Tt]), corresponding to the
shifted in time from the phase §P2'] by /2. Lyapunov exponents 49, N147, and\q45, USing the same

FIG. 21. Schematic illustration of the phase relations among th
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FIG. 23. Stepwise structure of the Lyapunov spectrum normal-
ized by the maximum Lyapunov exponent for a quasi-one-

dimensional system with hard-wall boundary conditions in both di- - ‘ ?’\W&‘

; . ; A ASOZARN
rections. Inset: Full scale of the normalized Lyapunov spectrum. Q.? wr %&t&i&)

= N\ ARG

collision number interval[ 235 200,246 00D The corre- g N \."";‘\\S\\\&\Q\S‘
sponding Lyapunov exponents are indicated by arrows in § » \\\?\ﬁ
Fig. 23. This figure for the two-point steps of the Lyapunov  , \\\
spectrum shows a similar wavelike structure to the wavelike
structure of the quantitie$5q§,'})/py]->t in the model of Sec. 1

IV B, although one may think that fluctuations of these
graphs in this model are much smaller than in the previous
model. This suggests that the two-point steps of the %916000 0 '/_q{g
Lyapunov spectrum in Fig. 23 are similar to the two-point

steps in the model of Sec. IV B. The wavelength of the spa- (@) n=_143 ,“
tial waves and the periods of the time oscillations corre- . 15 j“,‘%\‘\\“\\\!'é\'\}“\\ AN
sponding to theth two-point step are R/and 7y/i, respec- A o oy ‘A\\\\\\\\\\‘Q\;f\\’\“&\\\\\“‘\@\\\\\\\\‘!ﬂ‘:\i‘\‘& £
tively, and the time-oscillating period of the first two-point < °-°g “\ ;\\\\&}\\\\\ @.\!}K\\\\“@*
step is given approximately by the same perigd(~27;) $ oo0s! \\\Q;}’ §\\\\\\v \ >\\\}§§4\\\§,\,“ ‘
as in the model of Sec. IVB. It may also be noted that this § -0.1 \\\\\\‘\\‘:Z/zé“\ I3 ‘:.\\‘
kind of graph corresponding to the zero-Lyapunov exponent '0-012 § V.
N\ 150 1S almost constant. e

Figure 25 shows the contour plots of the quantities < L e SXF 1
(59{VIpy;); as functions of the normalized position 2360003000, ' '

(axj)t/Lx and the collision numben, corresponding to the
Lyapunov exponents 49 andX\ 145 in the first two-point step
of the Lyapunov spectrum in the same collision number in-
terval [ 223 800,246 00D The corresponding Lyapunov ex-  FIG. 24. Local time-averaged quantitiésqg(}/p,;), as func-
ponents are indicated by the brace under circles in Fig. 23ions of the normalized positiofty;). /L and the collision number
Similarly to the previous model, the nodes of two spatialn: corresponding to the Lyapunov exponentg, A7, andi s,
waves corresponding to the same two-point step almost cd? the same collision number intervig235 200,246 00D The sys-
incide with each other, and the phase of the time oscillatiofe™ IS the quasi-one-dimensional systef, i) with hard-wall
of the wave amplitudes is shifted by abomt2. This also boundary conditions in poth directions, and _the_ corresponding
says that the phase relations of graph&@®&nd 25b) are the Lyapunov exponents are indicated by arrows in Fig. 23. C_ontour
. , PR plots on the bottoms of these three-dimensional plots are given by
same type as the phase relatiRd.’] and[P2'] in Fig. 21. dotted lines, solid lines, and dashed lines corresponding to the val-
In a similar way, we can see that the time-oscillating wave- ° 50/} —0.08 0. and—0.08 vel P g
like structures for the second two-point steps of theues< dyy /Py =0.08, 0, and-0.08, respectively.
Lyapunov spectrum for this model are like the phgses]  nents of thekth two-point steps in this model. The fact that
and[P2] of Fig. 11 by replacing the period, of Fig. 11  the only difference between the model in this section and the
with the time-oscillating periodZ j~27, of this model. model in Sec. IV B is the boundary conditions in theirec-
These suggest an approximate expression for the Lyapunajon suggests that the one-point steps of the model in Sec.
vector components given by E¢6), for Lyapunov vector |V B come from the conservation of thecomponent of the
componentssq? corresponding to thath Lyapunov expo-  total momentum.
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0.08 eeeree i P ; P
< 84,/ Py > { (P,H), periodic boundary conditions in thedirection and

-0.08 ---———— hard-wall boundary conditions in the direction; H,P),
hard-wall boundary conditions in thedirection and periodic
boundary conditions in thg direction; and H,H), purely
hard-wall boundary conditions, in a system of rectangular
shape where we took thedirection as the narrow direction.
With each boundary case, we obtained different stepwise
structures of the Lyapunov spectra. For each boundary con-
dition, we also considered graphs of the following two
modes{ Ts], they componen®q) of the spatial coordinate
part of the Lyapunov vector of thigh particle corresponding

to the Lyapunov exponemnt, as a function of thex compo-
nentq,; of the spatial component of thgh particle, and
[Tt], the quantitysq!/p,; with they componenp,; of the
momentum coordinate of thieh particle as a function of the
position g,; and the collision numben;. These quantities
8q{ andsq{/p,; give constant values in some of the zero-
Lyapunov exponents, at least approximately. We found that
the steps of the Lyapunov spectra accompany a wavelike
structure in the quantityq{? or 5q{/p,;, depending on
the kind of steps of the Lyapunov spectra. A time-dependent
oscillating behavior appears in the wavelike structure of the
quantity 5q"?)/pyj, whereas the wavelike structure of the
224000 228000 232000 236000 240000 244000 quantity 5q(¥? is essentially stationary. Fluctuations of these

Y]
L quantitiessq(? and 5q{/p,; disturb their clear oscillatory

FIG. 25. Contour plots of the local time-averaged quantitiesStrUCtu,reS’ so we took a time av.erat%e of these quan@es
(89{P/py;); as functions of the normalized positigny;), /Ly and local time average for the quantiga,;’/py; because of its
the collision numbem, corresponding to the first two-point step time-oscillating behavior, and a longer time-average for the
consisting of the Lyapunov exponents,, and\ 145 using the same ~ quantity 5q(yT’ because it is much more stationary in time
collision number interval 223 800,246 00D The system is the than the quantitﬁqg,’})/pyj) to get their dominant wavelike
quasi-one-dimensional systed (H) with hard-wall boundary con-  structures. In Table |, we summarize our results about a cat-
ditions in both directions, and the corresponding Lyapunov expoegorization of the stepwise structures of the Lyapunov spec-
nents are indicated by the brace under circles in Fig. 23. Heretra by the wavelike structures of the Lyapunov vectors in the
dotted lines, solid lines, and dashed lines correspond to the valuggur boundary casesP(P), (P,H), (H,P), and H,H). In
(8a(/py;)=0.08, 0, and-0.08, respectively. Lyapunov exponents in each step of the Lyapunov spectra,
the wavelike structures of the quantidg(} or 5q/p,; are
approximately orthogonal to each other in spaoehe sense

In this paper, we have discussed numerically the stepwisef Eq. (3)], in space and tim@n the sense of Eq4)], or in
structure of the Lyapunov spectra and its correspondingime [in the sense of Eq6)], and this fact suggests that the
wavelike structures for the Lyapunov vectors in many-hardwavelike structures of these quantities are sufficient to cat-
disk systems. We concentrated on the quasi-one-dimensionagjorize the stepwise structure of the Lyapunov spectra in the
system whose shape is a very narrow rectangle that does nguasi-one-dimensional systems considered here.
allow exchange of disk positions. In the quasi-one- Hard-wall boundary conditions may be emulated in an
dimensional system, we can get a stepwise structure of thiafinite system by reflecting the positions and velocities of all
Lyapunov spectrum in a relatively small system, for ex-particles at each hard wall. The infinite system modes that
ample, even in a ten-particle system, whereas a fully twosurvive are those that satisfy the reflection symmetries. For
dimensional system would require many more particles. Irtranslational modes this requires combinations that produce
such a system, we have considered the following two probstanding waves, with nodes at the walls for modes with de-
lems: (a) How does the stepwise structure of the Lyapunowviations normal to the wall, and antinodes for modes with
spectra depend on boundary conditions such as periodideviations parallel to the wall, if the modes of the entire
boundary conditions and hard-wall boundary conditiofis? system are connected smoothly at the walls. Further, for
How can we categorize the stepwise structure of theéhard-wall systems the numberkofalues allowed is doubled
Lyapunov spectra using the wavelike structure of the correbecause half periods are also allowed. In this way, we may
sponding Lyapunov vectors? To consider probl&@analso  begin developing a theoretical picture that predicts the types
means to investigate the effects of the loss of spatial translaf Lyapunov modes and the rangelofalues for which these
tional invariance on the stepwise structure of the Lyapunowmodes are stable. Although this is the ultimate goal of these
spectra. In this paper, we considered four types of the boundiumerical investigations, the complete theoretical descrip-
ary conditions; P,P), purely periodic boundary conditions; tion remains an open problem.

(ayn=1

47

< gy >/ Lx

V. CONCLUSION AND REMARKS
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TABLE I. The categorization of the stepwise structures of the Lyapunov spectra and the associated wavelike structures of the Lyapunov
vectors in two-dimensional rectangular systems with the four boundary cases considered in this paper. Th@tasehe purely periodic
boundary caséSec. Il represented in Fig. 6, the cas®e,{) is the periodic boundary condition in thixedirection and hard-wall boundary
condition in they direction (Sec. IV A) represented in Fig. 12, the cad¢,P) is the hard-wall boundary condition in thedirection and
periodic boundary condition in the direction (Sec. IV B) represented in Fig. 16, and the casg Kl) is the purely hard-wall boundary
condition(Sec. IV Q represented in Fig. 22. Here we took thdirection as the narrow direction of the rectangle andxtdéection as the
longer orthogonal direction. The mofi@s]; is the stationary transverse Lyapunov mode appearir@q{ﬁ? as a function of,;, and the
mode[ Tt]; is a spatial wavelike structure with a time oscillation&q(y'})/pyj as a function ofy,; and time. The sufficeg=1,2, ... in the
label of modeg Ts]; and[Tt]; are the step numbers of the sequence in the Lyapunov spectra. In thisStébtee number of points in the
step(or the number of the zero-Lyapunov exponents in the line specified by the lahel0”), £ is the wavelength of spatial wavelike
structure, and’ is the period of time oscillation of the wavk, is the length of the quasi-one-dimensional rectangle, Bnid constant.

(P,P) (P,H) (H,P) (H.H)
Mode S c T S c T S c T S c T
An=0 6 4 2
[Tsl 2 L,/1 1 2L,/1
[Tt], 4 L,/1 7o/l 4 L,/1 7o/l 2 2,1 27,/1 2 2L,/1 27,/1
[Ts], 2 L,/2 1 2L,/2
[Tt], 4 L,/2 Tol2 4 L,/2 Tol2 2 2L,/2 275/2 2 2L,/2 27,/2
[Tsls : : : : : : 1 2L,/3

2

[Ttls 2L,/3 270/3 2 2L,/3 27,/3

Different from a purely two-dimensional model such as athe phase space dimensipithese problems remain to be
square system in which each particle can collide with anynvestigated in the future.
other particle, in the quasi-one-dimensional model a separa- Finally, we wish to emphasize the important conclusions
tion between the stepwise region and the smoothly changingf this work.
region of the Lyapunov spectrum is not clear. In R&], (1) For the system considered here, the quasi-one-
this point was explained as being caused by the fact thalimensional model with various combinations of periodic
particles interact only with the two nearest-neighbor par-2nd hard-wall boundary conditions, we can interpret all of
ticles, whereas in the purely two-dimensional low-densityh® Lyapunov modes as either due to spatial translational

systems particles can interact with more than two particles/nvarance{Ts] or due to time translational invariang@t].
In this paper, we considered the quasi-one-dimension Il modes are transverse, and no longitudinal modes have

systems only. However, there should be many other interes reen required17] to categorize the Lyapunov modes. How-

ing situations in which we can investigate structures of theSVer this does not preclude the existence of longitudinal
Lyapunov spectrum and the Lyapunov vectors. For examplé:']OdeS' . . . . . .

we may investigate the effect of the rotational invariance of (2) Itis necessary to include the time translational invari-
the system on such structures by considering a twodnce to obtain Lyapunov modes for the purely .hard-wall sys-
dimensional system with a circle shape. One might also infem, as the system d.O?S not have any spatial translational
vestigate the system in which the orbit is not deterministidnvarance but still exhibits a clear stepwise structure. There-

anymore, in order to know whether the deterministic Orbitfore, we conclude that spatial translational invariance alone

plays an important role in the stepwise structure of theS Not sufficient to explain the Lyapunov modeX].

Lyapunov spectrum or not. It may also _be important to in- ACKNOWLEDGMENTS

vestigate the dependence of the stepwise structures of the
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